年龄依赖性死亡力下的最优退休选择

Giorgio Ferrari, Shihao Zhu
{"title":"年龄依赖性死亡力下的最优退休选择","authors":"Giorgio Ferrari, Shihao Zhu","doi":"arxiv-2311.12169","DOIUrl":null,"url":null,"abstract":"This paper examines the retirement decision, optimal investment, and\nconsumption strategies under an age-dependent force of mortality. We formulate\nthe optimization problem as a combined stochastic control and optimal stopping\nproblem with a random time horizon, featuring three state variables: wealth,\nlabor income, and force of mortality. To address this problem, we transform it\ninto its dual form, which is a finite time horizon, three-dimensional\ndegenerate optimal stopping problem with interconnected dynamics. We establish\nthe existence of an optimal retirement boundary that splits the state space\ninto continuation and stopping regions. Regularity of the optimal stopping\nvalue function is derived and the boundary is proved to be Lipschitz\ncontinuous, and it is characterized as the unique solution to a nonlinear\nintegral equation, which we compute numerically. In the original coordinates,\nthe agent thus retires whenever her wealth exceeds an age-, labor income- and\nmortality-dependent transformed version of the optimal stopping boundary. We\nalso provide numerical illustrations of the optimal strategies, including the\nsensitivities of the optimal retirement boundary concerning the relevant\nmodel's parameters.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"7 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Retirement Choice under Age-dependent Force of Mortality\",\"authors\":\"Giorgio Ferrari, Shihao Zhu\",\"doi\":\"arxiv-2311.12169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the retirement decision, optimal investment, and\\nconsumption strategies under an age-dependent force of mortality. We formulate\\nthe optimization problem as a combined stochastic control and optimal stopping\\nproblem with a random time horizon, featuring three state variables: wealth,\\nlabor income, and force of mortality. To address this problem, we transform it\\ninto its dual form, which is a finite time horizon, three-dimensional\\ndegenerate optimal stopping problem with interconnected dynamics. We establish\\nthe existence of an optimal retirement boundary that splits the state space\\ninto continuation and stopping regions. Regularity of the optimal stopping\\nvalue function is derived and the boundary is proved to be Lipschitz\\ncontinuous, and it is characterized as the unique solution to a nonlinear\\nintegral equation, which we compute numerically. In the original coordinates,\\nthe agent thus retires whenever her wealth exceeds an age-, labor income- and\\nmortality-dependent transformed version of the optimal stopping boundary. We\\nalso provide numerical illustrations of the optimal strategies, including the\\nsensitivities of the optimal retirement boundary concerning the relevant\\nmodel's parameters.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.12169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.12169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在年龄依赖的死亡率作用下的退休决策、最优投资和消费策略。我们将优化问题描述为随机控制和最优停止问题的组合,具有随机时间范围,具有三个状态变量:财富,劳动收入和死亡力量。为了解决这一问题,我们将其转化为对偶形式,即有限时间范围内,具有相互关联动力学的三维退化最优停车问题。我们建立了将状态空间划分为连续区域和停止区域的最优退休边界的存在性。导出了最优停止值函数的正则性,证明了边界是lipschitz连续的,并将其表征为非线性积分方程的唯一解,并对其进行了数值计算。在原始坐标中,当代理人的财富超过与年龄、劳动收入和死亡率相关的最优停止边界时,代理人就会退休。我们还提供了最优策略的数值说明,包括关于相关模型参数的最优退休边界的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Retirement Choice under Age-dependent Force of Mortality
This paper examines the retirement decision, optimal investment, and consumption strategies under an age-dependent force of mortality. We formulate the optimization problem as a combined stochastic control and optimal stopping problem with a random time horizon, featuring three state variables: wealth, labor income, and force of mortality. To address this problem, we transform it into its dual form, which is a finite time horizon, three-dimensional degenerate optimal stopping problem with interconnected dynamics. We establish the existence of an optimal retirement boundary that splits the state space into continuation and stopping regions. Regularity of the optimal stopping value function is derived and the boundary is proved to be Lipschitz continuous, and it is characterized as the unique solution to a nonlinear integral equation, which we compute numerically. In the original coordinates, the agent thus retires whenever her wealth exceeds an age-, labor income- and mortality-dependent transformed version of the optimal stopping boundary. We also provide numerical illustrations of the optimal strategies, including the sensitivities of the optimal retirement boundary concerning the relevant model's parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信