{"title":"昆虫扑翼被动羽化和弯曲的流固耦合计算框架","authors":"Daisuke Ishihara, Minato Onishi","doi":"10.1002/fld.5251","DOIUrl":null,"url":null,"abstract":"<p>In flapping insect wings, veins support flexible wing membranes such that the wings form feathering and cambering motions passively from large elastic deformations. These motions are essentially important in unsteady aerodynamics of insect flapping flight. Hence, the underlying mechanism of this phenomenon is an important issue in studies on insect flight. Systematic parametric studies on strong coupling between a model wing describing these elastic deformations and the surrounding fluid, which is a direct formulation of this phenomenon, will be effective for solving this issue. The purpose of this study is to develop a robust numerical framework for these systematic parametric studies. The proposed framework consists of two novel numerical methods: (1) A fully parallelized solution method using both algebraic splitting and semi-implicit scheme for monolithic fluid–structure interaction (FSI) equation systems, which is numerically stable for a wide range of properties such as solid-to-fluid mass ratios and large body motions, and large elastic deformations. (2) A structural mechanics model for insect flapping wings using pixel modeling (pixel model wing), which is combined with explicit node-positioning to reduce computational costs significantly in controlling fluid meshes. The validity of the proposed framework is demonstrated for some benchmark problems and a dynamically scaled model incorporating actual insect data. Finally, from a parametric study for the pixel model wing flapped in fluid with a wide range of solid-to-fluid mass ratios, we find a FSI mechanism of feathering and cambering motions in flapping insect wings.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 4","pages":"435-481"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5251","citationCount":"0","resultStr":"{\"title\":\"Computational fluid–structure interaction framework for passive feathering and cambering in flapping insect wings\",\"authors\":\"Daisuke Ishihara, Minato Onishi\",\"doi\":\"10.1002/fld.5251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In flapping insect wings, veins support flexible wing membranes such that the wings form feathering and cambering motions passively from large elastic deformations. These motions are essentially important in unsteady aerodynamics of insect flapping flight. Hence, the underlying mechanism of this phenomenon is an important issue in studies on insect flight. Systematic parametric studies on strong coupling between a model wing describing these elastic deformations and the surrounding fluid, which is a direct formulation of this phenomenon, will be effective for solving this issue. The purpose of this study is to develop a robust numerical framework for these systematic parametric studies. The proposed framework consists of two novel numerical methods: (1) A fully parallelized solution method using both algebraic splitting and semi-implicit scheme for monolithic fluid–structure interaction (FSI) equation systems, which is numerically stable for a wide range of properties such as solid-to-fluid mass ratios and large body motions, and large elastic deformations. (2) A structural mechanics model for insect flapping wings using pixel modeling (pixel model wing), which is combined with explicit node-positioning to reduce computational costs significantly in controlling fluid meshes. The validity of the proposed framework is demonstrated for some benchmark problems and a dynamically scaled model incorporating actual insect data. Finally, from a parametric study for the pixel model wing flapped in fluid with a wide range of solid-to-fluid mass ratios, we find a FSI mechanism of feathering and cambering motions in flapping insect wings.</p>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"96 4\",\"pages\":\"435-481\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5251\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5251\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5251","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Computational fluid–structure interaction framework for passive feathering and cambering in flapping insect wings
In flapping insect wings, veins support flexible wing membranes such that the wings form feathering and cambering motions passively from large elastic deformations. These motions are essentially important in unsteady aerodynamics of insect flapping flight. Hence, the underlying mechanism of this phenomenon is an important issue in studies on insect flight. Systematic parametric studies on strong coupling between a model wing describing these elastic deformations and the surrounding fluid, which is a direct formulation of this phenomenon, will be effective for solving this issue. The purpose of this study is to develop a robust numerical framework for these systematic parametric studies. The proposed framework consists of two novel numerical methods: (1) A fully parallelized solution method using both algebraic splitting and semi-implicit scheme for monolithic fluid–structure interaction (FSI) equation systems, which is numerically stable for a wide range of properties such as solid-to-fluid mass ratios and large body motions, and large elastic deformations. (2) A structural mechanics model for insect flapping wings using pixel modeling (pixel model wing), which is combined with explicit node-positioning to reduce computational costs significantly in controlling fluid meshes. The validity of the proposed framework is demonstrated for some benchmark problems and a dynamically scaled model incorporating actual insect data. Finally, from a parametric study for the pixel model wing flapped in fluid with a wide range of solid-to-fluid mass ratios, we find a FSI mechanism of feathering and cambering motions in flapping insect wings.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.