昆虫扑翼被动羽化和弯曲的流固耦合计算框架

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Daisuke Ishihara, Minato Onishi
{"title":"昆虫扑翼被动羽化和弯曲的流固耦合计算框架","authors":"Daisuke Ishihara,&nbsp;Minato Onishi","doi":"10.1002/fld.5251","DOIUrl":null,"url":null,"abstract":"<p>In flapping insect wings, veins support flexible wing membranes such that the wings form feathering and cambering motions passively from large elastic deformations. These motions are essentially important in unsteady aerodynamics of insect flapping flight. Hence, the underlying mechanism of this phenomenon is an important issue in studies on insect flight. Systematic parametric studies on strong coupling between a model wing describing these elastic deformations and the surrounding fluid, which is a direct formulation of this phenomenon, will be effective for solving this issue. The purpose of this study is to develop a robust numerical framework for these systematic parametric studies. The proposed framework consists of two novel numerical methods: (1) A fully parallelized solution method using both algebraic splitting and semi-implicit scheme for monolithic fluid–structure interaction (FSI) equation systems, which is numerically stable for a wide range of properties such as solid-to-fluid mass ratios and large body motions, and large elastic deformations. (2) A structural mechanics model for insect flapping wings using pixel modeling (pixel model wing), which is combined with explicit node-positioning to reduce computational costs significantly in controlling fluid meshes. The validity of the proposed framework is demonstrated for some benchmark problems and a dynamically scaled model incorporating actual insect data. Finally, from a parametric study for the pixel model wing flapped in fluid with a wide range of solid-to-fluid mass ratios, we find a FSI mechanism of feathering and cambering motions in flapping insect wings.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 4","pages":"435-481"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5251","citationCount":"0","resultStr":"{\"title\":\"Computational fluid–structure interaction framework for passive feathering and cambering in flapping insect wings\",\"authors\":\"Daisuke Ishihara,&nbsp;Minato Onishi\",\"doi\":\"10.1002/fld.5251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In flapping insect wings, veins support flexible wing membranes such that the wings form feathering and cambering motions passively from large elastic deformations. These motions are essentially important in unsteady aerodynamics of insect flapping flight. Hence, the underlying mechanism of this phenomenon is an important issue in studies on insect flight. Systematic parametric studies on strong coupling between a model wing describing these elastic deformations and the surrounding fluid, which is a direct formulation of this phenomenon, will be effective for solving this issue. The purpose of this study is to develop a robust numerical framework for these systematic parametric studies. The proposed framework consists of two novel numerical methods: (1) A fully parallelized solution method using both algebraic splitting and semi-implicit scheme for monolithic fluid–structure interaction (FSI) equation systems, which is numerically stable for a wide range of properties such as solid-to-fluid mass ratios and large body motions, and large elastic deformations. (2) A structural mechanics model for insect flapping wings using pixel modeling (pixel model wing), which is combined with explicit node-positioning to reduce computational costs significantly in controlling fluid meshes. The validity of the proposed framework is demonstrated for some benchmark problems and a dynamically scaled model incorporating actual insect data. Finally, from a parametric study for the pixel model wing flapped in fluid with a wide range of solid-to-fluid mass ratios, we find a FSI mechanism of feathering and cambering motions in flapping insect wings.</p>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"96 4\",\"pages\":\"435-481\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5251\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5251\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5251","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在昆虫的扇动翅膀中,叶脉支撑着灵活的翅膀膜,使翅膀在大的弹性变形中被动地形成羽化和弯曲运动。这些运动在昆虫扑翼飞行的非定常空气动力学中具有重要意义。因此,这一现象的潜在机制是昆虫飞行研究中的一个重要问题。描述这些弹性变形的模型机翼与周围流体之间的强耦合是这一现象的直接表述,系统的参数化研究将有助于解决这一问题。本研究的目的是为这些系统参数研究开发一个强大的数值框架。提出的框架包括两种新的数值方法:(1)采用代数分裂和半隐式格式的全并行化求解整体流固耦合(FSI)方程系统,该方法对固液质量比、大物体运动和大弹性变形等大范围性质具有数值稳定性。(2)基于像素建模的昆虫扑翼结构力学模型(像素模型翼),结合显式节点定位,在控制流体网格时显著降低计算成本。通过一些基准问题和包含实际昆虫数据的动态缩放模型验证了该框架的有效性。最后,通过对大范围固液质量比的流体中扇动的像素模型翅膀的参数化研究,我们发现了昆虫扇动翅膀的羽化和弯曲运动的FSI机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational fluid–structure interaction framework for passive feathering and cambering in flapping insect wings

Computational fluid–structure interaction framework for passive feathering and cambering in flapping insect wings

Computational fluid–structure interaction framework for passive feathering and cambering in flapping insect wings

In flapping insect wings, veins support flexible wing membranes such that the wings form feathering and cambering motions passively from large elastic deformations. These motions are essentially important in unsteady aerodynamics of insect flapping flight. Hence, the underlying mechanism of this phenomenon is an important issue in studies on insect flight. Systematic parametric studies on strong coupling between a model wing describing these elastic deformations and the surrounding fluid, which is a direct formulation of this phenomenon, will be effective for solving this issue. The purpose of this study is to develop a robust numerical framework for these systematic parametric studies. The proposed framework consists of two novel numerical methods: (1) A fully parallelized solution method using both algebraic splitting and semi-implicit scheme for monolithic fluid–structure interaction (FSI) equation systems, which is numerically stable for a wide range of properties such as solid-to-fluid mass ratios and large body motions, and large elastic deformations. (2) A structural mechanics model for insect flapping wings using pixel modeling (pixel model wing), which is combined with explicit node-positioning to reduce computational costs significantly in controlling fluid meshes. The validity of the proposed framework is demonstrated for some benchmark problems and a dynamically scaled model incorporating actual insect data. Finally, from a parametric study for the pixel model wing flapped in fluid with a wide range of solid-to-fluid mass ratios, we find a FSI mechanism of feathering and cambering motions in flapping insect wings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信