多项式方程半混合系统的Khovanskii基。近似平稳非线性牛顿动力学

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Viktoriia Borovik , Paul Breiding , Javier del Pino , Mateusz Michałek , Oded Zilberberg
{"title":"多项式方程半混合系统的Khovanskii基。近似平稳非线性牛顿动力学","authors":"Viktoriia Borovik ,&nbsp;Paul Breiding ,&nbsp;Javier del Pino ,&nbsp;Mateusz Michałek ,&nbsp;Oded Zilberberg","doi":"10.1016/j.matpur.2023.12.005","DOIUrl":null,"url":null,"abstract":"<div><p>We provide an approach to counting roots of polynomial systems, where each polynomial is a general linear combination of prescribed, fixed polynomials. Our tools rely on the theory of Khovanskii bases, combined with toric geometry, the Bernstein–Khovanskii–Kushnirenko (BKK) Theorem, and fiber products.</p><p>As a direct application of this theory, we solve the problem of counting the number of approximate stationary states for coupled driven nonlinear resonators. We set up a system of polynomial equations that depends on three numbers <span><math><mi>N</mi><mo>,</mo><mi>n</mi></math></span> and <em>M</em> and whose solutions model the stationary states. The parameter <em>N</em> is the number of coupled resonators, <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></math></span> is the degree of nonlinearity of the underlying differential equation, and <em>M</em> is the number of frequencies used in the approximation. We use our main theorems, that is, the generalized BKK <span>Theorem 2.5</span> and the Decoupling <span>Theorem 3.8</span>, to count the number of (complex) solutions of the polynomial system for an arbitrary degree of nonlinearity <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>⩾</mo><mn>3</mn></math></span>, any number of resonators <span><math><mi>N</mi><mo>⩾</mo><mn>1</mn></math></span>, and <span><math><mi>M</mi><mo>=</mo><mn>1</mn></math></span> harmonic. We also solve the case <span><math><mi>N</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>M</mi><mo>=</mo><mn>2</mn></math></span> and give a computational way to check the number of solutions for <span><math><mi>N</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>M</mi><mo>&gt;</mo><mn>2</mn></math></span>. This extends the results of <span>[1]</span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782423001563/pdfft?md5=41eba82621f640de61de196186037d89&pid=1-s2.0-S0021782423001563-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Khovanskii bases for semimixed systems of polynomial equations – Approximating stationary nonlinear Newtonian dynamics\",\"authors\":\"Viktoriia Borovik ,&nbsp;Paul Breiding ,&nbsp;Javier del Pino ,&nbsp;Mateusz Michałek ,&nbsp;Oded Zilberberg\",\"doi\":\"10.1016/j.matpur.2023.12.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide an approach to counting roots of polynomial systems, where each polynomial is a general linear combination of prescribed, fixed polynomials. Our tools rely on the theory of Khovanskii bases, combined with toric geometry, the Bernstein–Khovanskii–Kushnirenko (BKK) Theorem, and fiber products.</p><p>As a direct application of this theory, we solve the problem of counting the number of approximate stationary states for coupled driven nonlinear resonators. We set up a system of polynomial equations that depends on three numbers <span><math><mi>N</mi><mo>,</mo><mi>n</mi></math></span> and <em>M</em> and whose solutions model the stationary states. The parameter <em>N</em> is the number of coupled resonators, <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></math></span> is the degree of nonlinearity of the underlying differential equation, and <em>M</em> is the number of frequencies used in the approximation. We use our main theorems, that is, the generalized BKK <span>Theorem 2.5</span> and the Decoupling <span>Theorem 3.8</span>, to count the number of (complex) solutions of the polynomial system for an arbitrary degree of nonlinearity <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>⩾</mo><mn>3</mn></math></span>, any number of resonators <span><math><mi>N</mi><mo>⩾</mo><mn>1</mn></math></span>, and <span><math><mi>M</mi><mo>=</mo><mn>1</mn></math></span> harmonic. We also solve the case <span><math><mi>N</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>M</mi><mo>=</mo><mn>2</mn></math></span> and give a computational way to check the number of solutions for <span><math><mi>N</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>M</mi><mo>&gt;</mo><mn>2</mn></math></span>. This extends the results of <span>[1]</span>.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001563/pdfft?md5=41eba82621f640de61de196186037d89&pid=1-s2.0-S0021782423001563-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一种计算多项式系统根的方法,其中每个多项式是规定的固定多项式的一般线性组合。我们的工具依赖于Khovanskii基理论,结合了环形几何、Bernstein-Khovanskii-Kushnirenko (BKK)定理和纤维产品。作为该理论的直接应用,我们解决了耦合驱动非线性谐振器近似稳态数的计算问题。我们建立了一个多项式方程系统,它依赖于三个数字N, N和M,其解是固定状态的模型。参数N是耦合谐振器的数目,2n−1是底层微分方程的非线性程度,M是用于近似的频率的数目。我们使用我们的主要定理,即广义BKK定理2.5和解耦定理3.8,来计算任意程度的非线性2n−1≥3,任意数量的谐振子N≥1,M=1谐波的多项式系统的(复)解的个数。我们还解决了N=1, N= 2和M=2的情况,并给出了一种计算方法来检查N=1, N= 2和M>2的解的个数。这扩展了[1]的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Khovanskii bases for semimixed systems of polynomial equations – Approximating stationary nonlinear Newtonian dynamics

We provide an approach to counting roots of polynomial systems, where each polynomial is a general linear combination of prescribed, fixed polynomials. Our tools rely on the theory of Khovanskii bases, combined with toric geometry, the Bernstein–Khovanskii–Kushnirenko (BKK) Theorem, and fiber products.

As a direct application of this theory, we solve the problem of counting the number of approximate stationary states for coupled driven nonlinear resonators. We set up a system of polynomial equations that depends on three numbers N,n and M and whose solutions model the stationary states. The parameter N is the number of coupled resonators, 2n1 is the degree of nonlinearity of the underlying differential equation, and M is the number of frequencies used in the approximation. We use our main theorems, that is, the generalized BKK Theorem 2.5 and the Decoupling Theorem 3.8, to count the number of (complex) solutions of the polynomial system for an arbitrary degree of nonlinearity 2n13, any number of resonators N1, and M=1 harmonic. We also solve the case N=1,n=2 and M=2 and give a computational way to check the number of solutions for N=1,n=2 and M>2. This extends the results of [1].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信