Viktoriia Borovik , Paul Breiding , Javier del Pino , Mateusz Michałek , Oded Zilberberg
{"title":"多项式方程半混合系统的Khovanskii基。近似平稳非线性牛顿动力学","authors":"Viktoriia Borovik , Paul Breiding , Javier del Pino , Mateusz Michałek , Oded Zilberberg","doi":"10.1016/j.matpur.2023.12.005","DOIUrl":null,"url":null,"abstract":"<div><p>We provide an approach to counting roots of polynomial systems, where each polynomial is a general linear combination of prescribed, fixed polynomials. Our tools rely on the theory of Khovanskii bases, combined with toric geometry, the Bernstein–Khovanskii–Kushnirenko (BKK) Theorem, and fiber products.</p><p>As a direct application of this theory, we solve the problem of counting the number of approximate stationary states for coupled driven nonlinear resonators. We set up a system of polynomial equations that depends on three numbers <span><math><mi>N</mi><mo>,</mo><mi>n</mi></math></span> and <em>M</em> and whose solutions model the stationary states. The parameter <em>N</em> is the number of coupled resonators, <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></math></span> is the degree of nonlinearity of the underlying differential equation, and <em>M</em> is the number of frequencies used in the approximation. We use our main theorems, that is, the generalized BKK <span>Theorem 2.5</span> and the Decoupling <span>Theorem 3.8</span>, to count the number of (complex) solutions of the polynomial system for an arbitrary degree of nonlinearity <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>⩾</mo><mn>3</mn></math></span>, any number of resonators <span><math><mi>N</mi><mo>⩾</mo><mn>1</mn></math></span>, and <span><math><mi>M</mi><mo>=</mo><mn>1</mn></math></span> harmonic. We also solve the case <span><math><mi>N</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>M</mi><mo>=</mo><mn>2</mn></math></span> and give a computational way to check the number of solutions for <span><math><mi>N</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>M</mi><mo>></mo><mn>2</mn></math></span>. This extends the results of <span>[1]</span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782423001563/pdfft?md5=41eba82621f640de61de196186037d89&pid=1-s2.0-S0021782423001563-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Khovanskii bases for semimixed systems of polynomial equations – Approximating stationary nonlinear Newtonian dynamics\",\"authors\":\"Viktoriia Borovik , Paul Breiding , Javier del Pino , Mateusz Michałek , Oded Zilberberg\",\"doi\":\"10.1016/j.matpur.2023.12.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide an approach to counting roots of polynomial systems, where each polynomial is a general linear combination of prescribed, fixed polynomials. Our tools rely on the theory of Khovanskii bases, combined with toric geometry, the Bernstein–Khovanskii–Kushnirenko (BKK) Theorem, and fiber products.</p><p>As a direct application of this theory, we solve the problem of counting the number of approximate stationary states for coupled driven nonlinear resonators. We set up a system of polynomial equations that depends on three numbers <span><math><mi>N</mi><mo>,</mo><mi>n</mi></math></span> and <em>M</em> and whose solutions model the stationary states. The parameter <em>N</em> is the number of coupled resonators, <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></math></span> is the degree of nonlinearity of the underlying differential equation, and <em>M</em> is the number of frequencies used in the approximation. We use our main theorems, that is, the generalized BKK <span>Theorem 2.5</span> and the Decoupling <span>Theorem 3.8</span>, to count the number of (complex) solutions of the polynomial system for an arbitrary degree of nonlinearity <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>⩾</mo><mn>3</mn></math></span>, any number of resonators <span><math><mi>N</mi><mo>⩾</mo><mn>1</mn></math></span>, and <span><math><mi>M</mi><mo>=</mo><mn>1</mn></math></span> harmonic. We also solve the case <span><math><mi>N</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>M</mi><mo>=</mo><mn>2</mn></math></span> and give a computational way to check the number of solutions for <span><math><mi>N</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>M</mi><mo>></mo><mn>2</mn></math></span>. This extends the results of <span>[1]</span>.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001563/pdfft?md5=41eba82621f640de61de196186037d89&pid=1-s2.0-S0021782423001563-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Khovanskii bases for semimixed systems of polynomial equations – Approximating stationary nonlinear Newtonian dynamics
We provide an approach to counting roots of polynomial systems, where each polynomial is a general linear combination of prescribed, fixed polynomials. Our tools rely on the theory of Khovanskii bases, combined with toric geometry, the Bernstein–Khovanskii–Kushnirenko (BKK) Theorem, and fiber products.
As a direct application of this theory, we solve the problem of counting the number of approximate stationary states for coupled driven nonlinear resonators. We set up a system of polynomial equations that depends on three numbers and M and whose solutions model the stationary states. The parameter N is the number of coupled resonators, is the degree of nonlinearity of the underlying differential equation, and M is the number of frequencies used in the approximation. We use our main theorems, that is, the generalized BKK Theorem 2.5 and the Decoupling Theorem 3.8, to count the number of (complex) solutions of the polynomial system for an arbitrary degree of nonlinearity , any number of resonators , and harmonic. We also solve the case and and give a computational way to check the number of solutions for and . This extends the results of [1].