Uhlenbeck结构抛物型系统的正则性理论

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jihoon Ok , Giovanni Scilla , Bianca Stroffolini
{"title":"Uhlenbeck结构抛物型系统的正则性理论","authors":"Jihoon Ok ,&nbsp;Giovanni Scilla ,&nbsp;Bianca Stroffolini","doi":"10.1016/j.matpur.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>We establish local regularity theory for parabolic systems of Uhlenbeck type with </span><em>φ</em><span>-growth. In particular, we prove local boundedness<span> of weak solutions and their gradient, and then local Hölder continuity<span> of the gradients, providing suitable assumptions on the growth function </span></span></span><em>φ</em>. Our approach, being independent of the degeneracy of the system, allows for a unified treatment of both the degenerate and the singular case.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regularity theory for parabolic systems with Uhlenbeck structure\",\"authors\":\"Jihoon Ok ,&nbsp;Giovanni Scilla ,&nbsp;Bianca Stroffolini\",\"doi\":\"10.1016/j.matpur.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We establish local regularity theory for parabolic systems of Uhlenbeck type with </span><em>φ</em><span>-growth. In particular, we prove local boundedness<span> of weak solutions and their gradient, and then local Hölder continuity<span> of the gradients, providing suitable assumptions on the growth function </span></span></span><em>φ</em>. Our approach, being independent of the degeneracy of the system, allows for a unified treatment of both the degenerate and the singular case.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002178242300154X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002178242300154X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

建立了具有φ-增长的Uhlenbeck型抛物型系统的局部正则性理论。特别地,我们证明了弱解及其梯度的局部有界性,然后证明了梯度的局部Hölder连续性,给出了关于生长函数φ的适当假设。我们的方法独立于系统的简并性,允许对简并性和奇异性进行统一处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity theory for parabolic systems with Uhlenbeck structure

We establish local regularity theory for parabolic systems of Uhlenbeck type with φ-growth. In particular, we prove local boundedness of weak solutions and their gradient, and then local Hölder continuity of the gradients, providing suitable assumptions on the growth function φ. Our approach, being independent of the degeneracy of the system, allows for a unified treatment of both the degenerate and the singular case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信