耐受停电的时间扳手

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Davide Bilò , Gianlorenzo D'Angelo , Luciano Gualà , Stefano Leucci , Mirko Rossi
{"title":"耐受停电的时间扳手","authors":"Davide Bilò ,&nbsp;Gianlorenzo D'Angelo ,&nbsp;Luciano Gualà ,&nbsp;Stefano Leucci ,&nbsp;Mirko Rossi","doi":"10.1016/j.jcss.2023.103495","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the notions of <em>blackout-tolerant</em> temporal <em>α</em>-spanner of a temporal graph <em>G</em> which is a subgraph of <em>G</em> that preserves the distances between pairs of vertices of interest in <em>G</em> up to a multiplicative factor of <em>α</em>, even when the graph edges at a single time-instant become unavailable. In particular, we consider the <em>single-source</em>, <em>single-pair</em>, and <em>all-pairs</em> cases and, for each case we look at three quality requirements: <em>exact</em> distances (i.e., <span><math><mi>α</mi><mo>=</mo><mn>1</mn></math></span>), <em>almost-exact</em> distances (i.e., <span><math><mi>α</mi><mo>=</mo><mn>1</mn><mo>+</mo><mi>ε</mi></math></span> for an arbitrarily small constant <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>), and <em>connectivity</em> (i.e., unbounded <em>α</em>). We provide almost tight bounds on the <em>size</em> of such spanners for <em>general</em> temporal graphs and for <em>temporal cliques</em>, showing that they are either very sparse (i.e., they have <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>n</mi><mo>)</mo></math></span> edges) or they must have size <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> in the worst case, where <em>n</em> is the number of vertices of <em>G</em>. We also investigate multiple blackouts and <em>k-edge fault-tolerant temporal spanners</em>.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"141 ","pages":"Article 103495"},"PeriodicalIF":1.1000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022000023001009/pdfft?md5=35a28914507288d7957b1fcfa27d6087&pid=1-s2.0-S0022000023001009-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Blackout-tolerant temporal spanners\",\"authors\":\"Davide Bilò ,&nbsp;Gianlorenzo D'Angelo ,&nbsp;Luciano Gualà ,&nbsp;Stefano Leucci ,&nbsp;Mirko Rossi\",\"doi\":\"10.1016/j.jcss.2023.103495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the notions of <em>blackout-tolerant</em> temporal <em>α</em>-spanner of a temporal graph <em>G</em> which is a subgraph of <em>G</em> that preserves the distances between pairs of vertices of interest in <em>G</em> up to a multiplicative factor of <em>α</em>, even when the graph edges at a single time-instant become unavailable. In particular, we consider the <em>single-source</em>, <em>single-pair</em>, and <em>all-pairs</em> cases and, for each case we look at three quality requirements: <em>exact</em> distances (i.e., <span><math><mi>α</mi><mo>=</mo><mn>1</mn></math></span>), <em>almost-exact</em> distances (i.e., <span><math><mi>α</mi><mo>=</mo><mn>1</mn><mo>+</mo><mi>ε</mi></math></span> for an arbitrarily small constant <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>), and <em>connectivity</em> (i.e., unbounded <em>α</em>). We provide almost tight bounds on the <em>size</em> of such spanners for <em>general</em> temporal graphs and for <em>temporal cliques</em>, showing that they are either very sparse (i.e., they have <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>n</mi><mo>)</mo></math></span> edges) or they must have size <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> in the worst case, where <em>n</em> is the number of vertices of <em>G</em>. We also investigate multiple blackouts and <em>k-edge fault-tolerant temporal spanners</em>.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"141 \",\"pages\":\"Article 103495\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022000023001009/pdfft?md5=35a28914507288d7957b1fcfa27d6087&pid=1-s2.0-S0022000023001009-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000023001009\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023001009","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了时间图G的容黑时间α-扳手的概念,时间图G是G的子图,它保留了G中感兴趣的顶点对之间的距离,直至α的乘因子,即使在单个时间瞬间的图边不可用。特别地,我们考虑了单源、单对和全对的情况,对于每种情况,我们都考虑了三个质量要求:精确距离(即α=1)、几乎精确距离(即对于任意小常数ε>0, α=1+ε)和连通性(即无界α)。我们为一般时间图和时间团提供了这种扳手大小的几乎严格的界限,表明它们要么非常稀疏(即,它们有O ~ (n)条边),要么在最坏的情况下它们必须有Ω(n2)的大小,其中n是g的顶点数。我们还研究了多个停电和k边容错的时间扳手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blackout-tolerant temporal spanners

We introduce the notions of blackout-tolerant temporal α-spanner of a temporal graph G which is a subgraph of G that preserves the distances between pairs of vertices of interest in G up to a multiplicative factor of α, even when the graph edges at a single time-instant become unavailable. In particular, we consider the single-source, single-pair, and all-pairs cases and, for each case we look at three quality requirements: exact distances (i.e., α=1), almost-exact distances (i.e., α=1+ε for an arbitrarily small constant ε>0), and connectivity (i.e., unbounded α). We provide almost tight bounds on the size of such spanners for general temporal graphs and for temporal cliques, showing that they are either very sparse (i.e., they have O˜(n) edges) or they must have size Ω(n2) in the worst case, where n is the number of vertices of G. We also investigate multiple blackouts and k-edge fault-tolerant temporal spanners.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信