Luciano Baresi, Davide Yi Xian Hu, Giovanni Quattrocchi, Luca Terracciano
{"title":"海王星:管理边缘无服务器功能的综合框架","authors":"Luciano Baresi, Davide Yi Xian Hu, Giovanni Quattrocchi, Luca Terracciano","doi":"10.1145/3634750","DOIUrl":null,"url":null,"abstract":"<p>Applications that are constrained by low-latency requirements can hardly be executed on cloud infrastructures, given the high network delay required to reach remote servers. Multi-access Edge Computing (MEC) is the reference architecture for executing applications on nodes that are located close to users (i.e., at the <i>edge</i> of the network). This way, the network overhead is reduced but new challenges emerge. The resources available on edge nodes are limited, workloads fluctuate since users can rapidly change location, and complex tasks are becoming widespread (e.g., machine learning inference). To address these issues, this article presents <i>NEPTUNE</i>, a serverless-based framework that automates the management of large-scale MEC infrastructures. In particular, <i>NEPTUNE</i> provides i) the placement of serverless functions on MEC nodes according to users’ location, ii) the resolution of resource contention scenarios by avoiding that single nodes be saturated, and iii) the dynamic allocation of CPUs and GPUs to meet foreseen execution times. To assess <i>NEPTUNE</i>, we built a prototype based on K3S, an edge-dedicated version of Kubernetes, and executed a comprehensive set of experiments. Results show that <i>NEPTUNE</i> obtains a significant reduction in terms of response time, network overhead, and resource consumption compared to five state-of-the-art solutions.</p>","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":" 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NEPTUNE: a Comprehensive Framework for Managing Serverless Functions at the Edge\",\"authors\":\"Luciano Baresi, Davide Yi Xian Hu, Giovanni Quattrocchi, Luca Terracciano\",\"doi\":\"10.1145/3634750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Applications that are constrained by low-latency requirements can hardly be executed on cloud infrastructures, given the high network delay required to reach remote servers. Multi-access Edge Computing (MEC) is the reference architecture for executing applications on nodes that are located close to users (i.e., at the <i>edge</i> of the network). This way, the network overhead is reduced but new challenges emerge. The resources available on edge nodes are limited, workloads fluctuate since users can rapidly change location, and complex tasks are becoming widespread (e.g., machine learning inference). To address these issues, this article presents <i>NEPTUNE</i>, a serverless-based framework that automates the management of large-scale MEC infrastructures. In particular, <i>NEPTUNE</i> provides i) the placement of serverless functions on MEC nodes according to users’ location, ii) the resolution of resource contention scenarios by avoiding that single nodes be saturated, and iii) the dynamic allocation of CPUs and GPUs to meet foreseen execution times. To assess <i>NEPTUNE</i>, we built a prototype based on K3S, an edge-dedicated version of Kubernetes, and executed a comprehensive set of experiments. Results show that <i>NEPTUNE</i> obtains a significant reduction in terms of response time, network overhead, and resource consumption compared to five state-of-the-art solutions.</p>\",\"PeriodicalId\":50919,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3634750\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3634750","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
NEPTUNE: a Comprehensive Framework for Managing Serverless Functions at the Edge
Applications that are constrained by low-latency requirements can hardly be executed on cloud infrastructures, given the high network delay required to reach remote servers. Multi-access Edge Computing (MEC) is the reference architecture for executing applications on nodes that are located close to users (i.e., at the edge of the network). This way, the network overhead is reduced but new challenges emerge. The resources available on edge nodes are limited, workloads fluctuate since users can rapidly change location, and complex tasks are becoming widespread (e.g., machine learning inference). To address these issues, this article presents NEPTUNE, a serverless-based framework that automates the management of large-scale MEC infrastructures. In particular, NEPTUNE provides i) the placement of serverless functions on MEC nodes according to users’ location, ii) the resolution of resource contention scenarios by avoiding that single nodes be saturated, and iii) the dynamic allocation of CPUs and GPUs to meet foreseen execution times. To assess NEPTUNE, we built a prototype based on K3S, an edge-dedicated version of Kubernetes, and executed a comprehensive set of experiments. Results show that NEPTUNE obtains a significant reduction in terms of response time, network overhead, and resource consumption compared to five state-of-the-art solutions.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.