{"title":"总能量和交叉螺旋度可控MHD系统的弱解","authors":"Changxing Miao , Weikui Ye","doi":"10.1016/j.matpur.2023.12.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove the non-uniqueness of three-dimensional magneto-hydrodynamic (MHD) system in <span><math><mi>C</mi><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo><mo>)</mo></math></span><span> for any initial data in </span><span><math><msup><mrow><mi>H</mi></mrow><mrow><mover><mrow><mi>β</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> (<span><math><mover><mrow><mi>β</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>></mo><mn>0</mn></math></span><span>), by exhibiting that the total energy and the cross helicity<span><span> can be controlled in a given positive time interval. Our results extend the non-uniqueness results of the ideal MHD system to the viscous and resistive MHD system. Different from the ideal MHD system, the dissipative effect in the viscous and resistive MHD system prevents the </span>nonlinear term from balancing the stress error </span></span><span><math><mo>(</mo><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>˚</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>˚</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> as doing in <span>[4]</span>. We introduce the box flows and construct the perturbation consisting in seven different kinds of flows in convex integral scheme, which ensures that the iteration works and yields the non-uniqueness.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"181 ","pages":"Pages 190-227"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the weak solutions for the MHD systems with controllable total energy and cross helicity\",\"authors\":\"Changxing Miao , Weikui Ye\",\"doi\":\"10.1016/j.matpur.2023.12.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove the non-uniqueness of three-dimensional magneto-hydrodynamic (MHD) system in <span><math><mi>C</mi><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo><mo>)</mo></math></span><span> for any initial data in </span><span><math><msup><mrow><mi>H</mi></mrow><mrow><mover><mrow><mi>β</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> (<span><math><mover><mrow><mi>β</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>></mo><mn>0</mn></math></span><span>), by exhibiting that the total energy and the cross helicity<span><span> can be controlled in a given positive time interval. Our results extend the non-uniqueness results of the ideal MHD system to the viscous and resistive MHD system. Different from the ideal MHD system, the dissipative effect in the viscous and resistive MHD system prevents the </span>nonlinear term from balancing the stress error </span></span><span><math><mo>(</mo><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>˚</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>˚</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> as doing in <span>[4]</span>. We introduce the box flows and construct the perturbation consisting in seven different kinds of flows in convex integral scheme, which ensures that the iteration works and yields the non-uniqueness.</p></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"181 \",\"pages\":\"Pages 190-227\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001617\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001617","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the weak solutions for the MHD systems with controllable total energy and cross helicity
In this paper, we prove the non-uniqueness of three-dimensional magneto-hydrodynamic (MHD) system in for any initial data in (), by exhibiting that the total energy and the cross helicity can be controlled in a given positive time interval. Our results extend the non-uniqueness results of the ideal MHD system to the viscous and resistive MHD system. Different from the ideal MHD system, the dissipative effect in the viscous and resistive MHD system prevents the nonlinear term from balancing the stress error as doing in [4]. We introduce the box flows and construct the perturbation consisting in seven different kinds of flows in convex integral scheme, which ensures that the iteration works and yields the non-uniqueness.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.