几何缩放的复杂性

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Antoine Deza , Sebastian Pokutta , Lionel Pournin
{"title":"几何缩放的复杂性","authors":"Antoine Deza ,&nbsp;Sebastian Pokutta ,&nbsp;Lionel Pournin","doi":"10.1016/j.orl.2023.11.010","DOIUrl":null,"url":null,"abstract":"<div><p>Geometric scaling, introduced by Schulz and Weismantel in 2002, solves the integer optimization problem <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>c</mi><mo>⋅</mo><mi>x</mi><mo>:</mo><mi>x</mi><mo>∈</mo><mi>P</mi><mo>∩</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>}</mo></math></span> by means of primal augmentations, where <span><math><mi>P</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span> is a polytope. We restrict ourselves to the important case when </span><em>P</em> is a 0/1-polytope. Schulz and Weismantel showed that no more than <span><math><mi>O</mi><mo>(</mo><mi>n</mi><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mi>n</mi><msub><mrow><mo>‖</mo><mi>c</mi><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo></math></span> calls to an augmentation oracle are required. This upper bound can be improved to <span><math><mi>O</mi><mo>(</mo><mi>n</mi><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><msub><mrow><mo>‖</mo><mi>c</mi><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo></math></span> using the early-stopping policy proposed in 2018 by Le Bodic, Pavelka, Pfetsch, and Pokutta. Considering both the maximum ratio augmentation variant of the method as well as its approximate version, we show that these upper bounds are essentially tight by maximizing over a <em>n</em>-dimensional simplex with vectors <em>c</em> such that <span><math><msub><mrow><mo>‖</mo><mi>c</mi><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub></math></span> is either <em>n</em> or <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complexity of geometric scaling\",\"authors\":\"Antoine Deza ,&nbsp;Sebastian Pokutta ,&nbsp;Lionel Pournin\",\"doi\":\"10.1016/j.orl.2023.11.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Geometric scaling, introduced by Schulz and Weismantel in 2002, solves the integer optimization problem <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>c</mi><mo>⋅</mo><mi>x</mi><mo>:</mo><mi>x</mi><mo>∈</mo><mi>P</mi><mo>∩</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>}</mo></math></span> by means of primal augmentations, where <span><math><mi>P</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span> is a polytope. We restrict ourselves to the important case when </span><em>P</em> is a 0/1-polytope. Schulz and Weismantel showed that no more than <span><math><mi>O</mi><mo>(</mo><mi>n</mi><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mi>n</mi><msub><mrow><mo>‖</mo><mi>c</mi><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo></math></span> calls to an augmentation oracle are required. This upper bound can be improved to <span><math><mi>O</mi><mo>(</mo><mi>n</mi><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><msub><mrow><mo>‖</mo><mi>c</mi><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo></math></span> using the early-stopping policy proposed in 2018 by Le Bodic, Pavelka, Pfetsch, and Pokutta. Considering both the maximum ratio augmentation variant of the method as well as its approximate version, we show that these upper bounds are essentially tight by maximizing over a <em>n</em>-dimensional simplex with vectors <em>c</em> such that <span><math><msub><mrow><mo>‖</mo><mi>c</mi><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub></math></span> is either <em>n</em> or <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637723001980\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637723001980","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

几何尺度由Schulz和Weismantel于2002年引入,通过原增广解决了整数优化问题max (c⋅x:x∈P∩Zn),其中P∧Rn是一个多面体。我们只考虑P是0/1多面体的情况。Schulz和Weismantel表明,不需要超过O(nlog2 ln n‖c‖∞)对增强oracle的调用。使用Le Bodic, Pavelka, Pfetsch和Pokutta在2018年提出的早期停止策略,可以将该上界改进为O(nlog2²‖c‖∞)。考虑到该方法的最大比例增广变体及其近似版本,我们证明了这些上界本质上是紧的,通过在一个n维单纯形上最大化向量c,使得‖c‖∞为n或2n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complexity of geometric scaling

Geometric scaling, introduced by Schulz and Weismantel in 2002, solves the integer optimization problem max{cx:xPZn} by means of primal augmentations, where PRn is a polytope. We restrict ourselves to the important case when P is a 0/1-polytope. Schulz and Weismantel showed that no more than O(nlog2nc) calls to an augmentation oracle are required. This upper bound can be improved to O(nlog2c) using the early-stopping policy proposed in 2018 by Le Bodic, Pavelka, Pfetsch, and Pokutta. Considering both the maximum ratio augmentation variant of the method as well as its approximate version, we show that these upper bounds are essentially tight by maximizing over a n-dimensional simplex with vectors c such that c is either n or 2n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信