一种减少太赫兹脉冲电光采样检测失真的重构方法

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jalal Gholinejad , Samiye Matloub , Ali Rostami
{"title":"一种减少太赫兹脉冲电光采样检测失真的重构方法","authors":"Jalal Gholinejad ,&nbsp;Samiye Matloub ,&nbsp;Ali Rostami","doi":"10.1016/j.nancom.2023.100491","DOIUrl":null,"url":null,"abstract":"<div><p>Terahertz<span> (THz) band is an important range in photonics, and provides numerous advantages in various applications. One of the most popular detection methods for THz pulses is electro-optic sampling (EOS). EOS provides many benefits; however, in this method distortion damages the output signal, and limits the bandwidth of this technique. In this article, a calculation-based approach is proposed to remove the effect of distortion in EOS detection process. This manner is based on definition of a base-level spectrum which modifies the output of EOS to eliminate unwanted disorders. The introduced method is computational, inexpensive, feasible, fast, adaptable, and effective. Moreover, a detailed comprehensive step-by-step model of THz time-domain spectroscopy (THz-TDS) with a simple and obvious perspective for ZnTe and GaP crystals is provided.</span></p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"39 ","pages":"Article 100491"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reconstructing approach to reduce distortion in detection of THz pulses via electro-optic sampling\",\"authors\":\"Jalal Gholinejad ,&nbsp;Samiye Matloub ,&nbsp;Ali Rostami\",\"doi\":\"10.1016/j.nancom.2023.100491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Terahertz<span> (THz) band is an important range in photonics, and provides numerous advantages in various applications. One of the most popular detection methods for THz pulses is electro-optic sampling (EOS). EOS provides many benefits; however, in this method distortion damages the output signal, and limits the bandwidth of this technique. In this article, a calculation-based approach is proposed to remove the effect of distortion in EOS detection process. This manner is based on definition of a base-level spectrum which modifies the output of EOS to eliminate unwanted disorders. The introduced method is computational, inexpensive, feasible, fast, adaptable, and effective. Moreover, a detailed comprehensive step-by-step model of THz time-domain spectroscopy (THz-TDS) with a simple and obvious perspective for ZnTe and GaP crystals is provided.</span></p></div>\",\"PeriodicalId\":54336,\"journal\":{\"name\":\"Nano Communication Networks\",\"volume\":\"39 \",\"pages\":\"Article 100491\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Communication Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878778923000571\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778923000571","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

太赫兹(THz)波段是光子学中的重要波段,在各种应用中具有许多优势。太赫兹脉冲最常用的检测方法之一是电光采样(EOS)。EOS提供了许多好处;然而,在这种方法中,失真破坏了输出信号,限制了该技术的带宽。本文提出了一种基于计算的方法来消除EOS检测过程中失真的影响。这种方式是基于基电平频谱的定义,它修改EOS的输出以消除不必要的紊乱。该方法具有计算量大、成本低、可行、快速、适应性强、效果好等特点。此外,本文还提供了一个详细的、综合的、以ZnTe和GaP晶体为对象的太赫兹时域光谱(THz- tds)分步模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reconstructing approach to reduce distortion in detection of THz pulses via electro-optic sampling

Terahertz (THz) band is an important range in photonics, and provides numerous advantages in various applications. One of the most popular detection methods for THz pulses is electro-optic sampling (EOS). EOS provides many benefits; however, in this method distortion damages the output signal, and limits the bandwidth of this technique. In this article, a calculation-based approach is proposed to remove the effect of distortion in EOS detection process. This manner is based on definition of a base-level spectrum which modifies the output of EOS to eliminate unwanted disorders. The introduced method is computational, inexpensive, feasible, fast, adaptable, and effective. Moreover, a detailed comprehensive step-by-step model of THz time-domain spectroscopy (THz-TDS) with a simple and obvious perspective for ZnTe and GaP crystals is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信