{"title":"耗散材料的空间维度和动力学过程相互联系,创造具有逼真功能的合成系统","authors":"Oleg E. Shklyaev, Anna C. Balazs","doi":"10.1038/s41565-023-01530-z","DOIUrl":null,"url":null,"abstract":"Biological systems spontaneously convert energy input into the actions necessary to survive. Motivated by the efficacy of these processes, researchers aim to forge materials systems that exhibit the self-sustained and autonomous functionality found in nature. Success in this effort will require synthetic analogues of the following: a metabolism to generate energy, a vasculature to transport energy and materials, a nervous system to transmit ‘commands’, a musculoskeletal system to translate commands into physical action, regulatory networks to monitor the entire enterprise, and a mechanism to convert ‘nutrients’ into growing materials. Design rules must interconnect the material’s structural and kinetic properties over ranges of length (that can vary from the nano- to mesoscale) and timescales to enable local energy dissipations to power global functionality. Moreover, by harnessing dynamic interactions intrinsic to the material, the system itself can perform the work needed for its own functionality. Here, we assess the advances and challenges in dissipative materials design and at the same time aim to spur developments in next-generation functional, ‘living’ materials. This Review aims to spur developments in next-generation functional materials by highlighting design rules to interconnect length and timescales.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 2","pages":"146-159"},"PeriodicalIF":34.9000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interlinking spatial dimensions and kinetic processes in dissipative materials to create synthetic systems with lifelike functionality\",\"authors\":\"Oleg E. Shklyaev, Anna C. Balazs\",\"doi\":\"10.1038/s41565-023-01530-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological systems spontaneously convert energy input into the actions necessary to survive. Motivated by the efficacy of these processes, researchers aim to forge materials systems that exhibit the self-sustained and autonomous functionality found in nature. Success in this effort will require synthetic analogues of the following: a metabolism to generate energy, a vasculature to transport energy and materials, a nervous system to transmit ‘commands’, a musculoskeletal system to translate commands into physical action, regulatory networks to monitor the entire enterprise, and a mechanism to convert ‘nutrients’ into growing materials. Design rules must interconnect the material’s structural and kinetic properties over ranges of length (that can vary from the nano- to mesoscale) and timescales to enable local energy dissipations to power global functionality. Moreover, by harnessing dynamic interactions intrinsic to the material, the system itself can perform the work needed for its own functionality. Here, we assess the advances and challenges in dissipative materials design and at the same time aim to spur developments in next-generation functional, ‘living’ materials. This Review aims to spur developments in next-generation functional materials by highlighting design rules to interconnect length and timescales.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"19 2\",\"pages\":\"146-159\"},\"PeriodicalIF\":34.9000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41565-023-01530-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-023-01530-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Interlinking spatial dimensions and kinetic processes in dissipative materials to create synthetic systems with lifelike functionality
Biological systems spontaneously convert energy input into the actions necessary to survive. Motivated by the efficacy of these processes, researchers aim to forge materials systems that exhibit the self-sustained and autonomous functionality found in nature. Success in this effort will require synthetic analogues of the following: a metabolism to generate energy, a vasculature to transport energy and materials, a nervous system to transmit ‘commands’, a musculoskeletal system to translate commands into physical action, regulatory networks to monitor the entire enterprise, and a mechanism to convert ‘nutrients’ into growing materials. Design rules must interconnect the material’s structural and kinetic properties over ranges of length (that can vary from the nano- to mesoscale) and timescales to enable local energy dissipations to power global functionality. Moreover, by harnessing dynamic interactions intrinsic to the material, the system itself can perform the work needed for its own functionality. Here, we assess the advances and challenges in dissipative materials design and at the same time aim to spur developments in next-generation functional, ‘living’ materials. This Review aims to spur developments in next-generation functional materials by highlighting design rules to interconnect length and timescales.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.