维格纳-塞茨单元近似与库仑簇的相关性

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, FLUIDS & PLASMAS
E. S. Shpil’ko, D. I. Zhukhovitskii
{"title":"维格纳-塞茨单元近似与库仑簇的相关性","authors":"E. S. Shpil’ko,&nbsp;D. I. Zhukhovitskii","doi":"10.1134/S1063780X23600937","DOIUrl":null,"url":null,"abstract":"<p>A molecular dynamics simulation of a system of massive charged particles on a compensating homogeneous background confined by a spherical surface has been carried out. A crystallized cluster is a set of nested spherical shells of almost the same structure and a core. It is shown that cluster melting is a combination of shell and core melting. It is found that the values of the Coulomb coupling parameter Γ corresponding to these two types of melting do not depend on the cluster size. Methods for determining Γ based on the Wigner–Seitz cell model are discussed. It is shown that the estimate based on the root-mean-square deviation of a particle from the center of its cell is unreliable due to the self-diffusion of particles. A relation is proposed that defines Γ in terms of the root-mean-square velocity and acceleration of the particle and does not include the root-mean-square deviation of the particle from its average position. It is shown that this relation is satisfied with high accuracy not only for the crystallized, but also for the liquid state. Thus, it has been demonstrated that the Wigner–Seitz cell model is applicable to the strongly inhomogeneous system under consideration.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relevance of the Wigner–Seitz Cell Approximation for the Coulomb Clusters\",\"authors\":\"E. S. Shpil’ko,&nbsp;D. I. Zhukhovitskii\",\"doi\":\"10.1134/S1063780X23600937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A molecular dynamics simulation of a system of massive charged particles on a compensating homogeneous background confined by a spherical surface has been carried out. A crystallized cluster is a set of nested spherical shells of almost the same structure and a core. It is shown that cluster melting is a combination of shell and core melting. It is found that the values of the Coulomb coupling parameter Γ corresponding to these two types of melting do not depend on the cluster size. Methods for determining Γ based on the Wigner–Seitz cell model are discussed. It is shown that the estimate based on the root-mean-square deviation of a particle from the center of its cell is unreliable due to the self-diffusion of particles. A relation is proposed that defines Γ in terms of the root-mean-square velocity and acceleration of the particle and does not include the root-mean-square deviation of the particle from its average position. It is shown that this relation is satisfied with high accuracy not only for the crystallized, but also for the liquid state. Thus, it has been demonstrated that the Wigner–Seitz cell model is applicable to the strongly inhomogeneous system under consideration.</p>\",\"PeriodicalId\":735,\"journal\":{\"name\":\"Plasma Physics Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics Reports\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063780X23600937\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063780X23600937","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

我们对球形表面限制的补偿均质背景上的大质量带电粒子系统进行了分子动力学模拟。结晶簇是一组结构几乎相同的嵌套球壳和一个核心。研究表明,晶簇熔化是壳和核熔化的结合。研究发现,与这两种熔化相对应的库仑耦合参数 Γ 的值并不取决于晶簇的大小。讨论了基于 Wigner-Seitz 晶胞模型确定 Γ 的方法。结果表明,由于粒子的自扩散,基于粒子与其晶胞中心的均方根偏差的估计是不可靠的。我们提出了一种关系,用粒子的均方根速度和加速度来定义 Γ,而不包括粒子对其平均位置的均方根偏差。结果表明,这种关系不仅在结晶状态下,而且在液态下都能高精度地得到满足。由此证明,Wigner-Seitz 晶胞模型适用于所考虑的强不均匀系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Relevance of the Wigner–Seitz Cell Approximation for the Coulomb Clusters

Relevance of the Wigner–Seitz Cell Approximation for the Coulomb Clusters

A molecular dynamics simulation of a system of massive charged particles on a compensating homogeneous background confined by a spherical surface has been carried out. A crystallized cluster is a set of nested spherical shells of almost the same structure and a core. It is shown that cluster melting is a combination of shell and core melting. It is found that the values of the Coulomb coupling parameter Γ corresponding to these two types of melting do not depend on the cluster size. Methods for determining Γ based on the Wigner–Seitz cell model are discussed. It is shown that the estimate based on the root-mean-square deviation of a particle from the center of its cell is unreliable due to the self-diffusion of particles. A relation is proposed that defines Γ in terms of the root-mean-square velocity and acceleration of the particle and does not include the root-mean-square deviation of the particle from its average position. It is shown that this relation is satisfied with high accuracy not only for the crystallized, but also for the liquid state. Thus, it has been demonstrated that the Wigner–Seitz cell model is applicable to the strongly inhomogeneous system under consideration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Physics Reports
Plasma Physics Reports 物理-物理:流体与等离子体
CiteScore
1.90
自引率
36.40%
发文量
104
审稿时长
4-8 weeks
期刊介绍: Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信