基于相关性的时间序列分层聚类与空间约束

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Alessia Benevento, Fabrizio Durante
{"title":"基于相关性的时间序列分层聚类与空间约束","authors":"Alessia Benevento,&nbsp;Fabrizio Durante","doi":"10.1016/j.spasta.2023.100797","DOIUrl":null,"url":null,"abstract":"<div><p>Correlation-based hierarchical clustering methods for time series typically are based on a suitable dissimilarity matrix derived from pairwise measures of association. Here, this dissimilarity is modified in order to take into account the presence of spatial constraints. This modification exploits the geometric structure of the space of correlation matrices, i.e. their Riemannian manifold. Specifically, the temporal correlation matrix (based on van der Waerden coefficient) is aggregated to the spatial correlation matrix (obtained from a suitable Matérn correlation function) via a geodesic in the Riemannian manifold. Our approach is presented and discussed using simulated and real data, highlighting its main advantages and computational aspects.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675323000726/pdfft?md5=3ee964aa120a14c44ecb0bd937ded35f&pid=1-s2.0-S2211675323000726-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Correlation-based hierarchical clustering of time series with spatial constraints\",\"authors\":\"Alessia Benevento,&nbsp;Fabrizio Durante\",\"doi\":\"10.1016/j.spasta.2023.100797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Correlation-based hierarchical clustering methods for time series typically are based on a suitable dissimilarity matrix derived from pairwise measures of association. Here, this dissimilarity is modified in order to take into account the presence of spatial constraints. This modification exploits the geometric structure of the space of correlation matrices, i.e. their Riemannian manifold. Specifically, the temporal correlation matrix (based on van der Waerden coefficient) is aggregated to the spatial correlation matrix (obtained from a suitable Matérn correlation function) via a geodesic in the Riemannian manifold. Our approach is presented and discussed using simulated and real data, highlighting its main advantages and computational aspects.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211675323000726/pdfft?md5=3ee964aa120a14c44ecb0bd937ded35f&pid=1-s2.0-S2211675323000726-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675323000726\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000726","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于相关性的时间序列分层聚类方法通常是基于一个合适的异质性矩阵,该矩阵由成对的关联测量得出。在这里,为了考虑到空间限制的存在,对这种不相似性进行了修改。这种修改利用了相关矩阵空间的几何结构,即它们的黎曼流形。具体来说,时间相关矩阵(基于范德瓦登系数)通过黎曼流形中的大地线聚合到空间相关矩阵(通过合适的马特恩相关函数获得)。我们利用模拟数据和真实数据介绍并讨论了我们的方法,强调了其主要优势和计算方面的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation-based hierarchical clustering of time series with spatial constraints

Correlation-based hierarchical clustering methods for time series typically are based on a suitable dissimilarity matrix derived from pairwise measures of association. Here, this dissimilarity is modified in order to take into account the presence of spatial constraints. This modification exploits the geometric structure of the space of correlation matrices, i.e. their Riemannian manifold. Specifically, the temporal correlation matrix (based on van der Waerden coefficient) is aggregated to the spatial correlation matrix (obtained from a suitable Matérn correlation function) via a geodesic in the Riemannian manifold. Our approach is presented and discussed using simulated and real data, highlighting its main advantages and computational aspects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信