离散-时间同向线性系统的有限时间稳定化

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Roberto Ambrosino, Raffaele Iervolino
{"title":"离散-时间同向线性系统的有限时间稳定化","authors":"Roberto Ambrosino,&nbsp;Raffaele Iervolino","doi":"10.1016/j.nahs.2023.101456","DOIUrl":null,"url":null,"abstract":"<div><p>The finite-time stabilizing control design problem for discrete-time conewise linear systems is tackled in this paper. Such a class of systems consists of the union of ordinary linear time-invariant subsystems, whose dynamics are defined in prescribed conical regions, constituting a conical partition of the state space. By imposing some cone-copositivity properties to a suitable piecewise quadratic function, two sufficient conditions are preliminarily derived concerning the system’s finite-time stability. By building on them, novel results are then presented for the system’s finite-time stabilization through a piecewise linear output feedback controller. Such results are based on the solution of feasibility problems involving sets of Linear Matrix Inequalities (LMIs). A numerical example illustrates the effectiveness of the proposed approach.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"52 ","pages":"Article 101456"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1751570X23001279/pdfft?md5=625bbbf054a010bf192f5e47a1e74f94&pid=1-s2.0-S1751570X23001279-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Finite-time stabilization of discrete-time conewise linear systems\",\"authors\":\"Roberto Ambrosino,&nbsp;Raffaele Iervolino\",\"doi\":\"10.1016/j.nahs.2023.101456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The finite-time stabilizing control design problem for discrete-time conewise linear systems is tackled in this paper. Such a class of systems consists of the union of ordinary linear time-invariant subsystems, whose dynamics are defined in prescribed conical regions, constituting a conical partition of the state space. By imposing some cone-copositivity properties to a suitable piecewise quadratic function, two sufficient conditions are preliminarily derived concerning the system’s finite-time stability. By building on them, novel results are then presented for the system’s finite-time stabilization through a piecewise linear output feedback controller. Such results are based on the solution of feasibility problems involving sets of Linear Matrix Inequalities (LMIs). A numerical example illustrates the effectiveness of the proposed approach.</p></div>\",\"PeriodicalId\":49011,\"journal\":{\"name\":\"Nonlinear Analysis-Hybrid Systems\",\"volume\":\"52 \",\"pages\":\"Article 101456\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1751570X23001279/pdfft?md5=625bbbf054a010bf192f5e47a1e74f94&pid=1-s2.0-S1751570X23001279-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Hybrid Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751570X23001279\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X23001279","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨的是离散时间协整线性系统的有限时间稳定控制设计问题。这类系统由普通线性时不变子系统联合组成,其动力学定义在规定的锥形区域内,构成状态空间的锥形分割。通过对合适的片断二次函数施加一些锥正性属性,初步推导出有关系统有限时间稳定性的两个充分条件。在此基础上,提出了通过片断线性输出反馈控制器实现系统有限时间稳定性的新结果。这些结果基于涉及线性矩阵不等式集的可行性问题的求解。一个数值示例说明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-time stabilization of discrete-time conewise linear systems

The finite-time stabilizing control design problem for discrete-time conewise linear systems is tackled in this paper. Such a class of systems consists of the union of ordinary linear time-invariant subsystems, whose dynamics are defined in prescribed conical regions, constituting a conical partition of the state space. By imposing some cone-copositivity properties to a suitable piecewise quadratic function, two sufficient conditions are preliminarily derived concerning the system’s finite-time stability. By building on them, novel results are then presented for the system’s finite-time stabilization through a piecewise linear output feedback controller. Such results are based on the solution of feasibility problems involving sets of Linear Matrix Inequalities (LMIs). A numerical example illustrates the effectiveness of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信