莫伊里超导电性回顾与 Roeser-Huber 公式的应用

IF 5.6 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Michael R. Koblischka, Anjela Koblischka-Veneva
{"title":"莫伊里超导电性回顾与 Roeser-Huber 公式的应用","authors":"Michael R. Koblischka,&nbsp;Anjela Koblischka-Veneva","doi":"10.1016/j.supcon.2023.100073","DOIUrl":null,"url":null,"abstract":"<div><p>Moiré superconductivity represents a new class of superconducting materials since the discovery of superconductivity in magic-angle (1.1°) twisted bi-layer graphene (MATBG), forming a Moiré lattice with a much bigger crystal parameter as the original lattice constant of graphene. Hence, experimentally changing the Moiré twist angle, 0.93° <span><math><mrow><mo>⩽</mo><mi>Θ</mi><mo>⩽</mo></mrow></math></span>1.27, leads to a variation of the superconducting properties and enables a new way of engineering 2D superconducting materials. Details of the robust superconducting state of MATBG as function of charge carrier density, temperature and applied magnetic fields are reviewed. The influence of the top/bottom hexagonal boron nitride layer thickness on the superconducting properties of MATBG was also demonstrated in the literature. In all fabricated MATBG devices, changing of the charge carrier density leads to the appearance of insulating, metallic and even ferromagnetic states, which separate several superconducting domes in the phase diagram (longitudinal resistance, <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>xx</mi></mrow></msub></mrow></math></span>, as function of temperature <em>T</em> and charge carrier density, <em>n</em>). Further works have considered MATBG combined with WSe<sub>2</sub>-layers, twisted bi-layer WSe<sub>2</sub>, magic-angle tri-layer graphene (MATTG), and most recently, four-layer (MAT4G) and five-layer (MAT5G) stacks. The differences between the layered, cuprate high-<span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> superconductors and the Moiré superconductors are compiled together. The collected information is then used to apply the Roeser-Huber formalism to Moiré-type superconductivity to calculate the superconducting transition temperature, <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, using only information of the Moiré lattice and the electronic configuration. To account for the different charge carrier densities in the experimental data sets and the low charge carrier mass demands that a new parameter <span><math><mrow><mi>η</mi></mrow></math></span> must be introduced to the Roeser-Huber formalism to enable the description of several superconducting domes found in the phase diagram for a given Moiré angle. Doing so, the calculated data fit well to the correlation curve defined within the Roeser-Huber formalism.</p></div>","PeriodicalId":101185,"journal":{"name":"Superconductivity","volume":"9 ","pages":"Article 100073"},"PeriodicalIF":5.6000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772830723000388/pdfft?md5=942bcaf6ce1556389b23f365592e4178&pid=1-s2.0-S2772830723000388-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Review of Moiré superconductivity and application of the Roeser-Huber formula\",\"authors\":\"Michael R. Koblischka,&nbsp;Anjela Koblischka-Veneva\",\"doi\":\"10.1016/j.supcon.2023.100073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Moiré superconductivity represents a new class of superconducting materials since the discovery of superconductivity in magic-angle (1.1°) twisted bi-layer graphene (MATBG), forming a Moiré lattice with a much bigger crystal parameter as the original lattice constant of graphene. Hence, experimentally changing the Moiré twist angle, 0.93° <span><math><mrow><mo>⩽</mo><mi>Θ</mi><mo>⩽</mo></mrow></math></span>1.27, leads to a variation of the superconducting properties and enables a new way of engineering 2D superconducting materials. Details of the robust superconducting state of MATBG as function of charge carrier density, temperature and applied magnetic fields are reviewed. The influence of the top/bottom hexagonal boron nitride layer thickness on the superconducting properties of MATBG was also demonstrated in the literature. In all fabricated MATBG devices, changing of the charge carrier density leads to the appearance of insulating, metallic and even ferromagnetic states, which separate several superconducting domes in the phase diagram (longitudinal resistance, <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>xx</mi></mrow></msub></mrow></math></span>, as function of temperature <em>T</em> and charge carrier density, <em>n</em>). Further works have considered MATBG combined with WSe<sub>2</sub>-layers, twisted bi-layer WSe<sub>2</sub>, magic-angle tri-layer graphene (MATTG), and most recently, four-layer (MAT4G) and five-layer (MAT5G) stacks. The differences between the layered, cuprate high-<span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> superconductors and the Moiré superconductors are compiled together. The collected information is then used to apply the Roeser-Huber formalism to Moiré-type superconductivity to calculate the superconducting transition temperature, <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, using only information of the Moiré lattice and the electronic configuration. To account for the different charge carrier densities in the experimental data sets and the low charge carrier mass demands that a new parameter <span><math><mrow><mi>η</mi></mrow></math></span> must be introduced to the Roeser-Huber formalism to enable the description of several superconducting domes found in the phase diagram for a given Moiré angle. Doing so, the calculated data fit well to the correlation curve defined within the Roeser-Huber formalism.</p></div>\",\"PeriodicalId\":101185,\"journal\":{\"name\":\"Superconductivity\",\"volume\":\"9 \",\"pages\":\"Article 100073\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772830723000388/pdfft?md5=942bcaf6ce1556389b23f365592e4178&pid=1-s2.0-S2772830723000388-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772830723000388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772830723000388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

自从在魔幻角(1.1°)扭曲双层石墨烯(MATBG)中发现超导电性以来,莫伊里超导电性代表了一类新的超导材料,它形成的莫伊里晶格的晶体参数比石墨烯的原始晶格常数大得多。因此,通过实验改变莫伊里扭转角(0.93° ⩽Θ⩽1.27)会导致超导特性的变化,从而为二维超导材料的工程化开辟了一条新途径。本文回顾了 MATBG 的稳健超导状态与电荷载流子密度、温度和外加磁场的函数关系。文献还证明了顶部/底部六方氮化硼层厚度对 MATBG 超导特性的影响。在所有制造出的 MATBG 器件中,电荷载流子密度的变化导致绝缘态、金属态甚至铁磁态的出现,从而在相图中分隔出几个超导圆顶(纵向电阻 Rxx 是温度 T 和电荷载流子密度 n 的函数)。更多的研究考虑了与 WSe2 层、扭曲双层 WSe2、魔角三层石墨烯(MATTG)以及最近的四层(MAT4G)和五层(MAT5G)堆叠相结合的 MATBG。层状、杯状高锝超导体与莫伊里超导体之间的差异被汇编在一起。然后,利用收集到的信息,将 Roeser-Huber 形式主义应用于莫伊里型超导,仅使用莫伊里晶格和电子构型信息计算超导转变温度 Tc。为了解释实验数据集中不同的电荷载流子密度和低电荷载流子质量,必须在罗伊瑟-胡贝尔形式主义中引入一个新参数η,以便能够描述在给定莫伊里角的相图中发现的多个超导圆顶。这样,计算出的数据与罗伊瑟-胡贝尔形式主义中定义的相关曲线非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Review of Moiré superconductivity and application of the Roeser-Huber formula

Review of Moiré superconductivity and application of the Roeser-Huber formula

Moiré superconductivity represents a new class of superconducting materials since the discovery of superconductivity in magic-angle (1.1°) twisted bi-layer graphene (MATBG), forming a Moiré lattice with a much bigger crystal parameter as the original lattice constant of graphene. Hence, experimentally changing the Moiré twist angle, 0.93° Θ1.27, leads to a variation of the superconducting properties and enables a new way of engineering 2D superconducting materials. Details of the robust superconducting state of MATBG as function of charge carrier density, temperature and applied magnetic fields are reviewed. The influence of the top/bottom hexagonal boron nitride layer thickness on the superconducting properties of MATBG was also demonstrated in the literature. In all fabricated MATBG devices, changing of the charge carrier density leads to the appearance of insulating, metallic and even ferromagnetic states, which separate several superconducting domes in the phase diagram (longitudinal resistance, Rxx, as function of temperature T and charge carrier density, n). Further works have considered MATBG combined with WSe2-layers, twisted bi-layer WSe2, magic-angle tri-layer graphene (MATTG), and most recently, four-layer (MAT4G) and five-layer (MAT5G) stacks. The differences between the layered, cuprate high-Tc superconductors and the Moiré superconductors are compiled together. The collected information is then used to apply the Roeser-Huber formalism to Moiré-type superconductivity to calculate the superconducting transition temperature, Tc, using only information of the Moiré lattice and the electronic configuration. To account for the different charge carrier densities in the experimental data sets and the low charge carrier mass demands that a new parameter η must be introduced to the Roeser-Huber formalism to enable the description of several superconducting domes found in the phase diagram for a given Moiré angle. Doing so, the calculated data fit well to the correlation curve defined within the Roeser-Huber formalism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信