Yangyang Zhu, Zheling Meng, Hao Wu, Xiao Fan, Wenhao Lv, Jie Tian, Kun Wang, Fang Nie
{"title":"将转移性宫颈淋巴结病分为原发癌部位的多模态超声深度学习放射组学:一项可行性研究。","authors":"Yangyang Zhu, Zheling Meng, Hao Wu, Xiao Fan, Wenhao Lv, Jie Tian, Kun Wang, Fang Nie","doi":"10.1055/a-2161-9369","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the feasibility of deep learning radiomics (DLR) based on multimodal ultrasound to differentiate the primary cancer sites of metastatic cervical lymphadenopathy (CLA).</p><p><strong>Materials and methods: </strong>This study analyzed 280 biopsy-confirmed metastatic CLAs from 280 cancer patients, including 54 from head and neck squamous cell carcinoma (HNSCC), 58 from thyroid cancer (TC), 92 from lung cancer (LC), and 76 from gastrointestinal cancer (GIC). Before biopsy, patients underwent conventional ultrasound (CUS), ultrasound elastography (UE), and contrast-enhanced ultrasound (CEUS). Based on CUS, DLR models using CUS, CUS+UE, CUS+CEUS, and CUS+UE+CEUS data were developed and compared. The best model was integrated with key clinical indicators selected by univariate analysis to achieve the best classification performance.</p><p><strong>Results: </strong>All DLR models achieved similar performance with respect to classifying four primary tumor sites of metastatic CLA (AUC:0.708~0.755). After integrating key clinical indicators (age, sex, and neck level), the US+UE+CEUS+clinical model yielded the best performance with an overall AUC of 0.822 in the validation cohort, but there was no significance compared with the basal CUS+clinical model (P>0.05), both of which identified metastasis from HNSCC, TC, LC, and GIC with 0.869 and 0.911, 0.838 and 0.916, 0.750 and 0.610, and 0.829 and 0.769, respectively.</p><p><strong>Conclusion: </strong>The ultrasound-based DLR model can be used to classify the primary cancer sites of metastatic CLA, and the CUS combined with clinical indicators is adequate to provide a high discriminatory performance. The addition of the combination of UE and CEUS data is expected to further improve performance.</p>","PeriodicalId":49400,"journal":{"name":"Ultraschall in Der Medizin","volume":" ","pages":"305-315"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning radiomics of multimodal ultrasound for classifying metastatic cervical lymphadenopathy into primary cancer sites: a feasibility study.\",\"authors\":\"Yangyang Zhu, Zheling Meng, Hao Wu, Xiao Fan, Wenhao Lv, Jie Tian, Kun Wang, Fang Nie\",\"doi\":\"10.1055/a-2161-9369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To investigate the feasibility of deep learning radiomics (DLR) based on multimodal ultrasound to differentiate the primary cancer sites of metastatic cervical lymphadenopathy (CLA).</p><p><strong>Materials and methods: </strong>This study analyzed 280 biopsy-confirmed metastatic CLAs from 280 cancer patients, including 54 from head and neck squamous cell carcinoma (HNSCC), 58 from thyroid cancer (TC), 92 from lung cancer (LC), and 76 from gastrointestinal cancer (GIC). Before biopsy, patients underwent conventional ultrasound (CUS), ultrasound elastography (UE), and contrast-enhanced ultrasound (CEUS). Based on CUS, DLR models using CUS, CUS+UE, CUS+CEUS, and CUS+UE+CEUS data were developed and compared. The best model was integrated with key clinical indicators selected by univariate analysis to achieve the best classification performance.</p><p><strong>Results: </strong>All DLR models achieved similar performance with respect to classifying four primary tumor sites of metastatic CLA (AUC:0.708~0.755). After integrating key clinical indicators (age, sex, and neck level), the US+UE+CEUS+clinical model yielded the best performance with an overall AUC of 0.822 in the validation cohort, but there was no significance compared with the basal CUS+clinical model (P>0.05), both of which identified metastasis from HNSCC, TC, LC, and GIC with 0.869 and 0.911, 0.838 and 0.916, 0.750 and 0.610, and 0.829 and 0.769, respectively.</p><p><strong>Conclusion: </strong>The ultrasound-based DLR model can be used to classify the primary cancer sites of metastatic CLA, and the CUS combined with clinical indicators is adequate to provide a high discriminatory performance. The addition of the combination of UE and CEUS data is expected to further improve performance.</p>\",\"PeriodicalId\":49400,\"journal\":{\"name\":\"Ultraschall in Der Medizin\",\"volume\":\" \",\"pages\":\"305-315\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultraschall in Der Medizin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2161-9369\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultraschall in Der Medizin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2161-9369","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Deep learning radiomics of multimodal ultrasound for classifying metastatic cervical lymphadenopathy into primary cancer sites: a feasibility study.
Purpose: To investigate the feasibility of deep learning radiomics (DLR) based on multimodal ultrasound to differentiate the primary cancer sites of metastatic cervical lymphadenopathy (CLA).
Materials and methods: This study analyzed 280 biopsy-confirmed metastatic CLAs from 280 cancer patients, including 54 from head and neck squamous cell carcinoma (HNSCC), 58 from thyroid cancer (TC), 92 from lung cancer (LC), and 76 from gastrointestinal cancer (GIC). Before biopsy, patients underwent conventional ultrasound (CUS), ultrasound elastography (UE), and contrast-enhanced ultrasound (CEUS). Based on CUS, DLR models using CUS, CUS+UE, CUS+CEUS, and CUS+UE+CEUS data were developed and compared. The best model was integrated with key clinical indicators selected by univariate analysis to achieve the best classification performance.
Results: All DLR models achieved similar performance with respect to classifying four primary tumor sites of metastatic CLA (AUC:0.708~0.755). After integrating key clinical indicators (age, sex, and neck level), the US+UE+CEUS+clinical model yielded the best performance with an overall AUC of 0.822 in the validation cohort, but there was no significance compared with the basal CUS+clinical model (P>0.05), both of which identified metastasis from HNSCC, TC, LC, and GIC with 0.869 and 0.911, 0.838 and 0.916, 0.750 and 0.610, and 0.829 and 0.769, respectively.
Conclusion: The ultrasound-based DLR model can be used to classify the primary cancer sites of metastatic CLA, and the CUS combined with clinical indicators is adequate to provide a high discriminatory performance. The addition of the combination of UE and CEUS data is expected to further improve performance.
期刊介绍:
Ultraschall in der Medizin / European Journal of Ultrasound publishes scientific papers and contributions from a variety of disciplines on the diagnostic and therapeutic applications of ultrasound with an emphasis on clinical application. Technical papers with a physiological theme as well as the interaction between ultrasound and biological systems might also occasionally be considered for peer review and publication, provided that the translational relevance is high and the link with clinical applications is tight. The editors and the publishers reserve the right to publish selected articles online only. Authors are welcome to submit supplementary video material. Letters and comments are also accepted, promoting a vivid exchange of opinions and scientific discussions.