红豆杉可减轻辐照诱发的小鼠睾丸损伤

IF 5.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Redox Report Pub Date : 2023-12-01 Epub Date: 2023-12-05 DOI:10.1080/13510002.2023.2279818
Yuanshuai Ran, Nengliang Duan, Zhixiang Gao, Yulong Liu, Xiaolong Liu, Boxin Xue
{"title":"红豆杉可减轻辐照诱发的小鼠睾丸损伤","authors":"Yuanshuai Ran, Nengliang Duan, Zhixiang Gao, Yulong Liu, Xiaolong Liu, Boxin Xue","doi":"10.1080/13510002.2023.2279818","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The testis is vulnerable to ionizing radiation, sexual dysfunction and male infertility are common problems after local radiation or whole-body exposure. Currently, there are no approved drugs for the prevention or treatment of radiation testicular injury. Sulforaphane (SFN) is an indirect antioxidant that induces phase II detoxification enzymes and antioxidant genes. Herein, we investigated the radiation protective effect of SFN on testicular injury in mice and its potential mechanism.</p><p><strong>Materials and methods: </strong>Mice were randomly divided into blank control group (Ctrl), radiation + no pretreatment group (IR), and radiation + SFN groups (IRS). In the radiation + SFN groups, starting from 72 h before radiation, SFN solution was intraperitoneally injected once a day until they were sacrificed. Mice in the blank control group and the radiation + no pretreatment group were simultaneously injected intraperitoneally with an equal volume of the solvent used to dissolve SFN (PBS with a final concentration of 0.1%DMSO) until they were sacrificed. They were subjected to 6Mev-ray radiation to the lower abdominal testis area (total dose 2Gy). Twenty-four hours after radiation, six mice in each group were randomly sacrificed. Seventy-two hours after radiation, the remaining mice were sacrificed.</p><p><strong>Results: </strong>The results showed that the harmful effects of ionizing radiation on testes were manifested as damage to histoarchitecture, increased oxidative stress, and apoptosis, and thus impaired male fertility. SFN injections can reverse these symptoms.</p><p><strong>Conclusions: </strong>The results showed that SFN can improve the damage of mouse testis caused by irradiation. Furthermore, SFN prevents spermatogenesis dysfunction caused by ionizing radiation by activating Nrf2 and its downstream antioxidant gene.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"28 1","pages":"2279818"},"PeriodicalIF":5.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001278/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sulforaphane attenuates irradiation induced testis injury in mice.\",\"authors\":\"Yuanshuai Ran, Nengliang Duan, Zhixiang Gao, Yulong Liu, Xiaolong Liu, Boxin Xue\",\"doi\":\"10.1080/13510002.2023.2279818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The testis is vulnerable to ionizing radiation, sexual dysfunction and male infertility are common problems after local radiation or whole-body exposure. Currently, there are no approved drugs for the prevention or treatment of radiation testicular injury. Sulforaphane (SFN) is an indirect antioxidant that induces phase II detoxification enzymes and antioxidant genes. Herein, we investigated the radiation protective effect of SFN on testicular injury in mice and its potential mechanism.</p><p><strong>Materials and methods: </strong>Mice were randomly divided into blank control group (Ctrl), radiation + no pretreatment group (IR), and radiation + SFN groups (IRS). In the radiation + SFN groups, starting from 72 h before radiation, SFN solution was intraperitoneally injected once a day until they were sacrificed. Mice in the blank control group and the radiation + no pretreatment group were simultaneously injected intraperitoneally with an equal volume of the solvent used to dissolve SFN (PBS with a final concentration of 0.1%DMSO) until they were sacrificed. They were subjected to 6Mev-ray radiation to the lower abdominal testis area (total dose 2Gy). Twenty-four hours after radiation, six mice in each group were randomly sacrificed. Seventy-two hours after radiation, the remaining mice were sacrificed.</p><p><strong>Results: </strong>The results showed that the harmful effects of ionizing radiation on testes were manifested as damage to histoarchitecture, increased oxidative stress, and apoptosis, and thus impaired male fertility. SFN injections can reverse these symptoms.</p><p><strong>Conclusions: </strong>The results showed that SFN can improve the damage of mouse testis caused by irradiation. Furthermore, SFN prevents spermatogenesis dysfunction caused by ionizing radiation by activating Nrf2 and its downstream antioxidant gene.</p>\",\"PeriodicalId\":21096,\"journal\":{\"name\":\"Redox Report\",\"volume\":\"28 1\",\"pages\":\"2279818\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Report\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/13510002.2023.2279818\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2023.2279818","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:睾丸易受电离辐射,局部或全身照射后出现性功能障碍和男性不育等常见问题。目前,还没有批准用于预防或治疗放射性睾丸损伤的药物。萝卜硫素(sulforaphan, SFN)是一种诱导II期解毒酶和抗氧化基因的间接抗氧化剂。本研究探讨了SFN对小鼠睾丸损伤的辐射保护作用及其可能机制。材料与方法:将小鼠随机分为空白对照组(Ctrl)、辐射+无预处理组(IR)和辐射+ SFN组(IRS)。放疗+ SFN组,从放疗前72 h开始,每天腹腔注射SFN溶液1次,直至死亡。空白对照组和放疗+无预处理组小鼠同时腹腔注射等量的SFN溶解溶剂(终浓度为0.1%DMSO的PBS),直至死亡。下腹部睾丸区接受6mev射线照射(总剂量2Gy)。放射24小时后,每组随机处死6只小鼠。放射72小时后,其余小鼠被处死。结果:电离辐射对睾丸的有害影响表现为组织结构损伤、氧化应激增加、细胞凋亡增加,从而损害男性生育能力。SFN注射可以逆转这些症状。结论:SFN对小鼠睾丸辐照损伤有改善作用。此外,SFN通过激活Nrf2及其下游抗氧化基因来防止电离辐射引起的精子发生功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sulforaphane attenuates irradiation induced testis injury in mice.

Objective: The testis is vulnerable to ionizing radiation, sexual dysfunction and male infertility are common problems after local radiation or whole-body exposure. Currently, there are no approved drugs for the prevention or treatment of radiation testicular injury. Sulforaphane (SFN) is an indirect antioxidant that induces phase II detoxification enzymes and antioxidant genes. Herein, we investigated the radiation protective effect of SFN on testicular injury in mice and its potential mechanism.

Materials and methods: Mice were randomly divided into blank control group (Ctrl), radiation + no pretreatment group (IR), and radiation + SFN groups (IRS). In the radiation + SFN groups, starting from 72 h before radiation, SFN solution was intraperitoneally injected once a day until they were sacrificed. Mice in the blank control group and the radiation + no pretreatment group were simultaneously injected intraperitoneally with an equal volume of the solvent used to dissolve SFN (PBS with a final concentration of 0.1%DMSO) until they were sacrificed. They were subjected to 6Mev-ray radiation to the lower abdominal testis area (total dose 2Gy). Twenty-four hours after radiation, six mice in each group were randomly sacrificed. Seventy-two hours after radiation, the remaining mice were sacrificed.

Results: The results showed that the harmful effects of ionizing radiation on testes were manifested as damage to histoarchitecture, increased oxidative stress, and apoptosis, and thus impaired male fertility. SFN injections can reverse these symptoms.

Conclusions: The results showed that SFN can improve the damage of mouse testis caused by irradiation. Furthermore, SFN prevents spermatogenesis dysfunction caused by ionizing radiation by activating Nrf2 and its downstream antioxidant gene.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Redox Report
Redox Report 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
28
审稿时长
>12 weeks
期刊介绍: Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included. While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信