瞬态震后滑动与余震触发:以2008年汶川MW7.9级地震为例

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences
Mengyu Xie , Baoping Shi , Lingyuan Meng
{"title":"瞬态震后滑动与余震触发:以2008年汶川MW7.9级地震为例","authors":"Mengyu Xie ,&nbsp;Baoping Shi ,&nbsp;Lingyuan Meng","doi":"10.1016/j.eqs.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate how a stress variation generated by a fault that experiences transient postseismic slip (TPS) affects the rate of aftershocks. First, we show that the postseismic slip from Rubin-Ampuero model is a TPS that can occur on the main fault with a velocity-weakening frictional motion, that the resultant slip function is similar to the generalized Jeffreys-Lomnitz creep law, and that the TPS can be explained by a continuous creep process undergoing reloading. Second, we obtain an approximate solution based on the Helmstetter-Shaw seismicity model relating the rate of aftershocks to such TPS. For the Wenchuan sequence, we perform a numerical fitting of the cumulative number of aftershocks using the Modified Omori Law (MOL), the Dieterich model, and the specific TPS model. The fitting curves indicate that the data can be better explained by the TPS model with a <em>B</em>/<em>A</em> ratio of approximately 1.12, where <em>A</em> and <em>B</em> are the parameters in the rate- and state-dependent friction law respectively. Moreover, the <em>p</em> and <em>c</em> that appear in the MOL can be interpreted by the <em>B/A</em> and the critical slip distance, respectively. Because the <em>B/A</em> ratio in the current model is always larger than 1, the model could become a possible candidate to explain aftershock rate commonly decay as a power law with a <em>p</em>-value larger than 1. Finally, the influence of the background seismicity rate <em>r</em> on parameters is studied; the results show that except for the apparent aftershock duration, other parameters are insensitive to <em>r</em>.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"36 6","pages":"Pages 445-457"},"PeriodicalIF":1.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000538/pdfft?md5=e60afefd449d76f8d1d804ce39f3eed3&pid=1-s2.0-S1674451923000538-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Transient postseismic slip and aftershock triggering: A case study of the 2008 MW7.9 Wenchuan Earthquake, China\",\"authors\":\"Mengyu Xie ,&nbsp;Baoping Shi ,&nbsp;Lingyuan Meng\",\"doi\":\"10.1016/j.eqs.2023.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we investigate how a stress variation generated by a fault that experiences transient postseismic slip (TPS) affects the rate of aftershocks. First, we show that the postseismic slip from Rubin-Ampuero model is a TPS that can occur on the main fault with a velocity-weakening frictional motion, that the resultant slip function is similar to the generalized Jeffreys-Lomnitz creep law, and that the TPS can be explained by a continuous creep process undergoing reloading. Second, we obtain an approximate solution based on the Helmstetter-Shaw seismicity model relating the rate of aftershocks to such TPS. For the Wenchuan sequence, we perform a numerical fitting of the cumulative number of aftershocks using the Modified Omori Law (MOL), the Dieterich model, and the specific TPS model. The fitting curves indicate that the data can be better explained by the TPS model with a <em>B</em>/<em>A</em> ratio of approximately 1.12, where <em>A</em> and <em>B</em> are the parameters in the rate- and state-dependent friction law respectively. Moreover, the <em>p</em> and <em>c</em> that appear in the MOL can be interpreted by the <em>B/A</em> and the critical slip distance, respectively. Because the <em>B/A</em> ratio in the current model is always larger than 1, the model could become a possible candidate to explain aftershock rate commonly decay as a power law with a <em>p</em>-value larger than 1. Finally, the influence of the background seismicity rate <em>r</em> on parameters is studied; the results show that except for the apparent aftershock duration, other parameters are insensitive to <em>r</em>.</p></div>\",\"PeriodicalId\":46333,\"journal\":{\"name\":\"Earthquake Science\",\"volume\":\"36 6\",\"pages\":\"Pages 445-457\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674451923000538/pdfft?md5=e60afefd449d76f8d1d804ce39f3eed3&pid=1-s2.0-S1674451923000538-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674451923000538\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451923000538","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们研究了由经历瞬态地震后滑动(TPS)的断层产生的应力变化如何影响余震的频率。首先,Rubin-Ampuero模型的震后滑动是一种可能发生在主断层上的以速度减弱的摩擦运动为主的TPS,由此产生的滑动函数与广义的Jeffreys-Lomnitz蠕变定律相似,可以用一个连续的再加载蠕变过程来解释TPS。其次,我们根据Helmstetter-Shaw地震活动性模型,将余震率与这种TPS联系起来,得到一个近似解。对于汶川序列,我们采用修正的Omori定律(MOL)、Dieterich模型和特定的TPS模型对累积余震次数进行了数值拟合。拟合曲线表明,B/ a比约为1.12的TPS模型可以更好地解释数据,其中a和B分别是速率相关和状态相关的摩擦律参数。MOL中出现的p和c可以分别用B/A和临界滑移距离来解释。由于当前模型中的B/A比总是大于1,因此该模型可能成为解释余震率通常衰减为p值大于1的幂律的可能候选模型。最后,研究了背景地震活动率r对各参数的影响;结果表明,除视余震持续时间外,其他参数对r不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient postseismic slip and aftershock triggering: A case study of the 2008 MW7.9 Wenchuan Earthquake, China

In this study, we investigate how a stress variation generated by a fault that experiences transient postseismic slip (TPS) affects the rate of aftershocks. First, we show that the postseismic slip from Rubin-Ampuero model is a TPS that can occur on the main fault with a velocity-weakening frictional motion, that the resultant slip function is similar to the generalized Jeffreys-Lomnitz creep law, and that the TPS can be explained by a continuous creep process undergoing reloading. Second, we obtain an approximate solution based on the Helmstetter-Shaw seismicity model relating the rate of aftershocks to such TPS. For the Wenchuan sequence, we perform a numerical fitting of the cumulative number of aftershocks using the Modified Omori Law (MOL), the Dieterich model, and the specific TPS model. The fitting curves indicate that the data can be better explained by the TPS model with a B/A ratio of approximately 1.12, where A and B are the parameters in the rate- and state-dependent friction law respectively. Moreover, the p and c that appear in the MOL can be interpreted by the B/A and the critical slip distance, respectively. Because the B/A ratio in the current model is always larger than 1, the model could become a possible candidate to explain aftershock rate commonly decay as a power law with a p-value larger than 1. Finally, the influence of the background seismicity rate r on parameters is studied; the results show that except for the apparent aftershock duration, other parameters are insensitive to r.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Science
Earthquake Science GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.10
自引率
8.30%
发文量
42
审稿时长
3 months
期刊介绍: Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration. The topics include, but not limited to, the following ● Seismic sources of all kinds. ● Earth structure at all scales. ● Seismotectonics. ● New methods and theoretical seismology. ● Strong ground motion. ● Seismic phenomena of all kinds. ● Seismic hazards, earthquake forecasting and prediction. ● Seismic instrumentation. ● Significant recent or past seismic events. ● Documentation of recent seismic events or important observations. ● Descriptions of field deployments, new methods, and available software tools. The types of manuscripts include the following. There is no length requirement, except for the Short Notes. 【Articles】 Original contributions that have not been published elsewhere. 【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages. 【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications. 【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals. 【Toolboxes】 Descriptions of novel numerical methods and associated computer codes. 【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models). 【Opinions】Views on important topics and future directions in earthquake science. 【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信