2023年kahramanmaraku (SE trkiye) MW7.9 & 7.8地震双重波的高分辨率地震活动性成像和早期余震迁移

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences
Hongyang Ding , Yijian Zhou , Zengxi Ge , Tuncay Taymaz , Abhijit Ghosh , Haoyu Xu , Tahir Serkan Irmak , Xiaodong Song
{"title":"2023年kahramanmaraku (SE trkiye) MW7.9 & 7.8地震双重波的高分辨率地震活动性成像和早期余震迁移","authors":"Hongyang Ding ,&nbsp;Yijian Zhou ,&nbsp;Zengxi Ge ,&nbsp;Tuncay Taymaz ,&nbsp;Abhijit Ghosh ,&nbsp;Haoyu Xu ,&nbsp;Tahir Serkan Irmak ,&nbsp;Xiaodong Song","doi":"10.1016/j.eqs.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM, a seamless workflow that sequentially performs phase picking, association, location, and matched filter for continuous data. The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28, which significantly improves the detection completeness and relocation precision compared to the public routine catalog. Employing the new PALM catalog, we analyze the structure of the seismogenic fault system. We find that the Eastern Anatolian Fault (EAF) that generated the first <em>M</em><sub>W</sub>7.9 mainshock is overall near-vertical, whereas complexities are revealed in a small-scale, such as subparallel subfaults, unmapped branches, and stepovers. The seismicity on EAF is shallow (&lt;15 km) and concentrated in depth distribution, indicating a clear lock-creep transition. In contrast, the Sürgü Fault (SF) that is responsible for the second <em>M</em><sub>W</sub>7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles (∼40°–80°). Aftershocks on the SF distribute in a broad range of depth, extending down to ∼35 km. We also analyze the temporal behavior of seismicity, discovering no immediate foreshocks within ∼5 days preceding the first mainshock, and no seismic activity on the SF before the second mainshock.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"36 6","pages":"Pages 417-432"},"PeriodicalIF":1.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000332/pdfft?md5=b2fdf52c84469c945ee919850888c787&pid=1-s2.0-S1674451923000332-main.pdf","citationCount":"1","resultStr":"{\"title\":\"High-resolution seismicity imaging and early aftershock migration of the 2023 Kahramanmaraş (SE Türkiye) MW7.9 & 7.8 earthquake doublet\",\"authors\":\"Hongyang Ding ,&nbsp;Yijian Zhou ,&nbsp;Zengxi Ge ,&nbsp;Tuncay Taymaz ,&nbsp;Abhijit Ghosh ,&nbsp;Haoyu Xu ,&nbsp;Tahir Serkan Irmak ,&nbsp;Xiaodong Song\",\"doi\":\"10.1016/j.eqs.2023.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM, a seamless workflow that sequentially performs phase picking, association, location, and matched filter for continuous data. The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28, which significantly improves the detection completeness and relocation precision compared to the public routine catalog. Employing the new PALM catalog, we analyze the structure of the seismogenic fault system. We find that the Eastern Anatolian Fault (EAF) that generated the first <em>M</em><sub>W</sub>7.9 mainshock is overall near-vertical, whereas complexities are revealed in a small-scale, such as subparallel subfaults, unmapped branches, and stepovers. The seismicity on EAF is shallow (&lt;15 km) and concentrated in depth distribution, indicating a clear lock-creep transition. In contrast, the Sürgü Fault (SF) that is responsible for the second <em>M</em><sub>W</sub>7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles (∼40°–80°). Aftershocks on the SF distribute in a broad range of depth, extending down to ∼35 km. We also analyze the temporal behavior of seismicity, discovering no immediate foreshocks within ∼5 days preceding the first mainshock, and no seismic activity on the SF before the second mainshock.</p></div>\",\"PeriodicalId\":46333,\"journal\":{\"name\":\"Earthquake Science\",\"volume\":\"36 6\",\"pages\":\"Pages 417-432\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674451923000332/pdfft?md5=b2fdf52c84469c945ee919850888c787&pid=1-s2.0-S1674451923000332-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674451923000332\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451923000332","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1

摘要

我们使用PALM为2023 SE t rkiye地震序列建立了一个高分辨率的早期余震目录,这是一个无缝的工作流程,可以依次执行相位选择、关联、定位和匹配连续数据的过滤器。该目录包含了2023-02-01-2023-02-28期间两个主震破裂区的29,519个定位良好的事件,与公共常规目录相比,显著提高了检测的完整性和定位精度。利用新的PALM目录,分析了发震断裂系统的结构。我们发现,产生第一次MW7.9主震的东安纳托利亚断层(EAF)总体上是接近垂直的,而复杂性在小尺度上显示出来,如次平行亚断层、未绘制的分支和台阶。东太平洋地震带地震活动性较浅(15 km),在深度分布上较为集中,具有明显的锁-蠕变过渡。相比之下,导致第二次MW7.8主震的Sürgü断层(SF)在成核段呈铲状,整体倾角较低(~ 40°-80°)。SF上的余震分布在很宽的深度范围内,向下延伸至~ 35 km。我们还分析了地震活动性的时间行为,发现在第一次主震之前的~ 5天内没有直接的前震,在第二次主震之前SF上没有地震活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-resolution seismicity imaging and early aftershock migration of the 2023 Kahramanmaraş (SE Türkiye) MW7.9 & 7.8 earthquake doublet

We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM, a seamless workflow that sequentially performs phase picking, association, location, and matched filter for continuous data. The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28, which significantly improves the detection completeness and relocation precision compared to the public routine catalog. Employing the new PALM catalog, we analyze the structure of the seismogenic fault system. We find that the Eastern Anatolian Fault (EAF) that generated the first MW7.9 mainshock is overall near-vertical, whereas complexities are revealed in a small-scale, such as subparallel subfaults, unmapped branches, and stepovers. The seismicity on EAF is shallow (<15 km) and concentrated in depth distribution, indicating a clear lock-creep transition. In contrast, the Sürgü Fault (SF) that is responsible for the second MW7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles (∼40°–80°). Aftershocks on the SF distribute in a broad range of depth, extending down to ∼35 km. We also analyze the temporal behavior of seismicity, discovering no immediate foreshocks within ∼5 days preceding the first mainshock, and no seismic activity on the SF before the second mainshock.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Science
Earthquake Science GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.10
自引率
8.30%
发文量
42
审稿时长
3 months
期刊介绍: Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration. The topics include, but not limited to, the following ● Seismic sources of all kinds. ● Earth structure at all scales. ● Seismotectonics. ● New methods and theoretical seismology. ● Strong ground motion. ● Seismic phenomena of all kinds. ● Seismic hazards, earthquake forecasting and prediction. ● Seismic instrumentation. ● Significant recent or past seismic events. ● Documentation of recent seismic events or important observations. ● Descriptions of field deployments, new methods, and available software tools. The types of manuscripts include the following. There is no length requirement, except for the Short Notes. 【Articles】 Original contributions that have not been published elsewhere. 【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages. 【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications. 【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals. 【Toolboxes】 Descriptions of novel numerical methods and associated computer codes. 【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models). 【Opinions】Views on important topics and future directions in earthquake science. 【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信