Rishi R. Dhingra , Werner I. Furuya , Yi Kee Yoong , Mathias Dutschmann
{"title":"pre-Bötzinger复合体对于迷走神经的吸气和吸气后运动放电的表达是必需的。","authors":"Rishi R. Dhingra , Werner I. Furuya , Yi Kee Yoong , Mathias Dutschmann","doi":"10.1016/j.resp.2023.104202","DOIUrl":null,"url":null,"abstract":"<div><p><span>The mammalian three-phase respiratory motor pattern of inspiration, post-inspiration and expiration is expressed in spinal and cranial motor nerve discharge and is generated by a distributed ponto-medullary respiratory pattern<span> generating network. Respiratory motor pattern generation depends on a rhythmogenic kernel located within the pre-Bötzinger complex (pre-BötC). In the present study, we tested the effect of unilateral and bilateral inactivation of the pre-BötC after local microinjection of the GABA</span></span><sub>A</sub><span><span> receptor agonist isoguvacine<span> (10 mM, 50 nl) on phrenic (PNA), hypoglossal (HNA) and vagal nerve (VNA) respiratory motor activities in an in situ perfused brainstem preparation of rats. Bilateral inactivation of the pre-BötC triggered cessation of phrenic (PNA), hypoglossal (HNA) and vagal (VNA) </span></span>nerve activities<span> for 15–20 min. Ipsilateral isoguvacine injections into the pre-BötC triggered transient (6–8 min) cessation of inspiratory and post-inspiratory VNA (p < 0.001) and suppressed inspiratory HNA by − 70 ± 15% (p < 0.01), while inspiratory PNA burst frequency increased by 46 ± 30% (p < 0.01). Taken together, these observations confirm the role of the pre-BötC as the rhythmogenic kernel of the mammalian respiratory network in situ and highlight a significant role for the pre-BötC in the transmission of vagal inspiratory and post-inspiratory pre-motor drive to the nucleus ambiguus.</span></span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The pre-Bötzinger complex is necessary for the expression of inspiratory and post-inspiratory motor discharge of the vagus\",\"authors\":\"Rishi R. Dhingra , Werner I. Furuya , Yi Kee Yoong , Mathias Dutschmann\",\"doi\":\"10.1016/j.resp.2023.104202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The mammalian three-phase respiratory motor pattern of inspiration, post-inspiration and expiration is expressed in spinal and cranial motor nerve discharge and is generated by a distributed ponto-medullary respiratory pattern<span> generating network. Respiratory motor pattern generation depends on a rhythmogenic kernel located within the pre-Bötzinger complex (pre-BötC). In the present study, we tested the effect of unilateral and bilateral inactivation of the pre-BötC after local microinjection of the GABA</span></span><sub>A</sub><span><span> receptor agonist isoguvacine<span> (10 mM, 50 nl) on phrenic (PNA), hypoglossal (HNA) and vagal nerve (VNA) respiratory motor activities in an in situ perfused brainstem preparation of rats. Bilateral inactivation of the pre-BötC triggered cessation of phrenic (PNA), hypoglossal (HNA) and vagal (VNA) </span></span>nerve activities<span> for 15–20 min. Ipsilateral isoguvacine injections into the pre-BötC triggered transient (6–8 min) cessation of inspiratory and post-inspiratory VNA (p < 0.001) and suppressed inspiratory HNA by − 70 ± 15% (p < 0.01), while inspiratory PNA burst frequency increased by 46 ± 30% (p < 0.01). Taken together, these observations confirm the role of the pre-BötC as the rhythmogenic kernel of the mammalian respiratory network in situ and highlight a significant role for the pre-BötC in the transmission of vagal inspiratory and post-inspiratory pre-motor drive to the nucleus ambiguus.</span></span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569904823001908\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904823001908","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The pre-Bötzinger complex is necessary for the expression of inspiratory and post-inspiratory motor discharge of the vagus
The mammalian three-phase respiratory motor pattern of inspiration, post-inspiration and expiration is expressed in spinal and cranial motor nerve discharge and is generated by a distributed ponto-medullary respiratory pattern generating network. Respiratory motor pattern generation depends on a rhythmogenic kernel located within the pre-Bötzinger complex (pre-BötC). In the present study, we tested the effect of unilateral and bilateral inactivation of the pre-BötC after local microinjection of the GABAA receptor agonist isoguvacine (10 mM, 50 nl) on phrenic (PNA), hypoglossal (HNA) and vagal nerve (VNA) respiratory motor activities in an in situ perfused brainstem preparation of rats. Bilateral inactivation of the pre-BötC triggered cessation of phrenic (PNA), hypoglossal (HNA) and vagal (VNA) nerve activities for 15–20 min. Ipsilateral isoguvacine injections into the pre-BötC triggered transient (6–8 min) cessation of inspiratory and post-inspiratory VNA (p < 0.001) and suppressed inspiratory HNA by − 70 ± 15% (p < 0.01), while inspiratory PNA burst frequency increased by 46 ± 30% (p < 0.01). Taken together, these observations confirm the role of the pre-BötC as the rhythmogenic kernel of the mammalian respiratory network in situ and highlight a significant role for the pre-BötC in the transmission of vagal inspiratory and post-inspiratory pre-motor drive to the nucleus ambiguus.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.