Archana Jain*, Himadri Karmakar, Peter W. Roesky* and Tarun K. Panda*,
{"title":"双(膦酰亚胺)甲烷作为通用配体在元素周期表金属配位中的作用","authors":"Archana Jain*, Himadri Karmakar, Peter W. Roesky* and Tarun K. Panda*, ","doi":"10.1021/acs.chemrev.3c00336","DOIUrl":null,"url":null,"abstract":"<p >The coordination chemistry of bis(phosphinimino)methanide ligands is widespread and accompanies a large number of metal ions in the periodic table ranging from lithium to neptunium. This unique class of ligand systems show copious coordination chemistry with the main-group, transition, rare-earth, and actinide metals and are considered to be among the most attractive ligand systems to researchers. The bis(phosphinimino)methanide metal complexes offer an extensive range of applications in various fields and have been demonstrated as one of the universal ligand systems to stabilize the metal ions in not only their usual but also their unusual oxidation states. The main-group and transition metal chemistry using bis(phosphinimino)methanides as ligands was last updated almost a decade ago. In this review, we provide a comprehensive overview of various state-of-the-art bis(phosphinimino)methanide-supported metal complexes by dealing with their synthesis, characterization, reactivity, and catalytic studies which were not included in the last critical reviews.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"123 23","pages":"13323–13373"},"PeriodicalIF":55.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Bis(phosphinimino)methanides as Universal Ligands in the Coordination Sphere of Metals across the Periodic Table\",\"authors\":\"Archana Jain*, Himadri Karmakar, Peter W. Roesky* and Tarun K. Panda*, \",\"doi\":\"10.1021/acs.chemrev.3c00336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The coordination chemistry of bis(phosphinimino)methanide ligands is widespread and accompanies a large number of metal ions in the periodic table ranging from lithium to neptunium. This unique class of ligand systems show copious coordination chemistry with the main-group, transition, rare-earth, and actinide metals and are considered to be among the most attractive ligand systems to researchers. The bis(phosphinimino)methanide metal complexes offer an extensive range of applications in various fields and have been demonstrated as one of the universal ligand systems to stabilize the metal ions in not only their usual but also their unusual oxidation states. The main-group and transition metal chemistry using bis(phosphinimino)methanides as ligands was last updated almost a decade ago. In this review, we provide a comprehensive overview of various state-of-the-art bis(phosphinimino)methanide-supported metal complexes by dealing with their synthesis, characterization, reactivity, and catalytic studies which were not included in the last critical reviews.</p>\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"123 23\",\"pages\":\"13323–13373\"},\"PeriodicalIF\":55.8000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00336\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00336","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Role of Bis(phosphinimino)methanides as Universal Ligands in the Coordination Sphere of Metals across the Periodic Table
The coordination chemistry of bis(phosphinimino)methanide ligands is widespread and accompanies a large number of metal ions in the periodic table ranging from lithium to neptunium. This unique class of ligand systems show copious coordination chemistry with the main-group, transition, rare-earth, and actinide metals and are considered to be among the most attractive ligand systems to researchers. The bis(phosphinimino)methanide metal complexes offer an extensive range of applications in various fields and have been demonstrated as one of the universal ligand systems to stabilize the metal ions in not only their usual but also their unusual oxidation states. The main-group and transition metal chemistry using bis(phosphinimino)methanides as ligands was last updated almost a decade ago. In this review, we provide a comprehensive overview of various state-of-the-art bis(phosphinimino)methanide-supported metal complexes by dealing with their synthesis, characterization, reactivity, and catalytic studies which were not included in the last critical reviews.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.