将意义建构的阶段概念化为掌握更好理解的轨迹:协调学生科学不确定性作为一种教学资源

IF 2.2 3区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Heesoo Ha, Jongchan Park, Ying-Chih Chen
{"title":"将意义建构的阶段概念化为掌握更好理解的轨迹:协调学生科学不确定性作为一种教学资源","authors":"Heesoo Ha, Jongchan Park, Ying-Chih Chen","doi":"10.1007/s11165-023-10144-3","DOIUrl":null,"url":null,"abstract":"<p>Sensemaking is conceptualized as a trajectory to develop better understanding and is advocated as one of the fundamental practices in science education. However, the field is lacking of a framework to view the prolonged process of sensemaking that starts from a raise of uncertainty of a target phenomenon to a grasping of a better understanding of a target phenomenon. The process requires teachers to recognize the role of scientific uncertainty in different phases of sensemaking and develop responsive instructional supports to help students navigate the uncertainties. With an attention on student scientific uncertainty as a potential driver of the trajectory of sensemaking, this study aims to identify different phases of sensemaking that can be developed with students’ scientific uncertainty. This study especially attends to two types of scientific uncertainty—conceptual and epistemic uncertainties. Conceptual uncertainty refers to student struggle of using conceptual understanding (e.g., mastery of content and everyday knowledge) to respond to an encountered phenomenon. Epistemic uncertainty emerges from struggles in using epistemic understanding to generate new ideas. Based on the multiple case study method, we examined sensemaking activities in two Korean science classrooms and one American science classroom and identified three phases of sensemaking: (a) focusing on a driving question related to a target phenomenon, (b) delving into multiple resources to develop plausible explanation(s), and (c) examining the successfulness of the new understanding and concretizing it. Based on the findings, we discuss two emerging themes. First, sensemaking progresses through three distinctive phases driven by students’ dynamically evolving scientific uncertainty. Second, attending to both epistemic and conceptual uncertainties can support developing sensemaking coherent with students’ view.</p>","PeriodicalId":47988,"journal":{"name":"Research in Science Education","volume":" 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conceptualizing Phases of Sensemaking as a Trajectory for Grasping Better Understanding: Coordinating Student Scientific Uncertainty as a Pedagogical Resource\",\"authors\":\"Heesoo Ha, Jongchan Park, Ying-Chih Chen\",\"doi\":\"10.1007/s11165-023-10144-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sensemaking is conceptualized as a trajectory to develop better understanding and is advocated as one of the fundamental practices in science education. However, the field is lacking of a framework to view the prolonged process of sensemaking that starts from a raise of uncertainty of a target phenomenon to a grasping of a better understanding of a target phenomenon. The process requires teachers to recognize the role of scientific uncertainty in different phases of sensemaking and develop responsive instructional supports to help students navigate the uncertainties. With an attention on student scientific uncertainty as a potential driver of the trajectory of sensemaking, this study aims to identify different phases of sensemaking that can be developed with students’ scientific uncertainty. This study especially attends to two types of scientific uncertainty—conceptual and epistemic uncertainties. Conceptual uncertainty refers to student struggle of using conceptual understanding (e.g., mastery of content and everyday knowledge) to respond to an encountered phenomenon. Epistemic uncertainty emerges from struggles in using epistemic understanding to generate new ideas. Based on the multiple case study method, we examined sensemaking activities in two Korean science classrooms and one American science classroom and identified three phases of sensemaking: (a) focusing on a driving question related to a target phenomenon, (b) delving into multiple resources to develop plausible explanation(s), and (c) examining the successfulness of the new understanding and concretizing it. Based on the findings, we discuss two emerging themes. First, sensemaking progresses through three distinctive phases driven by students’ dynamically evolving scientific uncertainty. Second, attending to both epistemic and conceptual uncertainties can support developing sensemaking coherent with students’ view.</p>\",\"PeriodicalId\":47988,\"journal\":{\"name\":\"Research in Science Education\",\"volume\":\" 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Science Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1007/s11165-023-10144-3\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11165-023-10144-3","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

意义建构被定义为发展更好理解的轨迹,并被提倡为科学教育的基本实践之一。然而,该领域缺乏一个框架来看待从提高目标现象的不确定性到更好地理解目标现象的把握的漫长过程。这一过程要求教师认识到科学不确定性在意义构建的不同阶段中的作用,并开发响应性的教学支持来帮助学生应对不确定性。本研究关注学生的科学不确定性作为语义构建轨迹的潜在驱动因素,旨在确定可以利用学生的科学不确定性发展的语义构建的不同阶段。本研究特别关注两种类型的科学不确定性——概念不确定性和认知不确定性。概念不确定性是指学生在使用概念理解(例如,对内容和日常知识的掌握)来应对遇到的现象时遇到的困难。认识论的不确定性产生于使用认识论理解产生新思想的斗争。基于多案例研究方法,我们研究了两个韩国科学教室和一个美国科学教室的语义构建活动,并确定了三个阶段的语义构建:(a)专注于与目标现象相关的驱动问题,(b)深入研究多种资源以开发合理的解释,(c)检查新理解的成功性并将其具体化。基于这些发现,我们讨论了两个新兴主题。首先,在学生动态变化的科学不确定性的驱动下,语义构建经历了三个不同的阶段。其次,关注认知和概念上的不确定性有助于发展与学生观点一致的语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conceptualizing Phases of Sensemaking as a Trajectory for Grasping Better Understanding: Coordinating Student Scientific Uncertainty as a Pedagogical Resource

Conceptualizing Phases of Sensemaking as a Trajectory for Grasping Better Understanding: Coordinating Student Scientific Uncertainty as a Pedagogical Resource

Sensemaking is conceptualized as a trajectory to develop better understanding and is advocated as one of the fundamental practices in science education. However, the field is lacking of a framework to view the prolonged process of sensemaking that starts from a raise of uncertainty of a target phenomenon to a grasping of a better understanding of a target phenomenon. The process requires teachers to recognize the role of scientific uncertainty in different phases of sensemaking and develop responsive instructional supports to help students navigate the uncertainties. With an attention on student scientific uncertainty as a potential driver of the trajectory of sensemaking, this study aims to identify different phases of sensemaking that can be developed with students’ scientific uncertainty. This study especially attends to two types of scientific uncertainty—conceptual and epistemic uncertainties. Conceptual uncertainty refers to student struggle of using conceptual understanding (e.g., mastery of content and everyday knowledge) to respond to an encountered phenomenon. Epistemic uncertainty emerges from struggles in using epistemic understanding to generate new ideas. Based on the multiple case study method, we examined sensemaking activities in two Korean science classrooms and one American science classroom and identified three phases of sensemaking: (a) focusing on a driving question related to a target phenomenon, (b) delving into multiple resources to develop plausible explanation(s), and (c) examining the successfulness of the new understanding and concretizing it. Based on the findings, we discuss two emerging themes. First, sensemaking progresses through three distinctive phases driven by students’ dynamically evolving scientific uncertainty. Second, attending to both epistemic and conceptual uncertainties can support developing sensemaking coherent with students’ view.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in Science Education
Research in Science Education EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
6.40
自引率
8.70%
发文量
45
期刊介绍: 2020 Five-Year Impact Factor: 4.021 2020 Impact Factor: 5.439 Ranking: 107/1319 (Education) – Scopus 2020 CiteScore 34.7 – Scopus Research in Science Education (RISE ) is highly regarded and widely recognised as a leading international journal for the promotion of scholarly science education research that is of interest to a wide readership. RISE publishes scholarly work that promotes science education research in all contexts and at all levels of education. This intention is aligned with the goals of Australasian Science Education Research Association (ASERA), the association connected with the journal. You should consider submitting your manscript to RISE if your research: Examines contexts such as early childhood, primary, secondary, tertiary, workplace, and informal learning as they relate to science education; and Advances our knowledge in science education research rather than reproducing what we already know. RISE will consider scholarly works that explore areas such as STEM, health, environment, cognitive science, neuroscience, psychology and higher education where science education is forefronted. The scholarly works of interest published within RISE reflect and speak to a diversity of opinions, approaches and contexts. Additionally, the journal’s editorial team welcomes a diversity of form in relation to science education-focused submissions. With this in mind, RISE seeks to publish empirical research papers. Empircal contributions are: Theoretically or conceptually grounded; Relevant to science education theory and practice; Highlight limitations of the study; and Identify possible future research opportunities. From time to time, we commission independent reviewers to undertake book reviews of recent monographs, edited collections and/or textbooks. Before you submit your manuscript to RISE, please consider the following checklist. Your paper is: No longer than 6000 words, including references. Sufficiently proof read to ensure strong grammar, syntax, coherence and good readability; Explicitly stating the significant and/or innovative contribution to the body of knowledge in your field in science education; Internationalised in the sense that your work has relevance beyond your context to a broader audience; and Making a contribution to the ongoing conversation by engaging substantively with prior research published in RISE. While we encourage authors to submit papers to a maximum length of 6000 words, in rare cases where the authors make a persuasive case that a work makes a highly significant original contribution to knowledge in science education, the editors may choose to publish longer works.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信