Qin Pan , Yang Chen , Shuoshuo Jiang , Xin Cui , Guanghuan Ma , Tianyi Ma
{"title":"电化学CO2还原M-N-C单原子催化剂活性位点的研究","authors":"Qin Pan , Yang Chen , Shuoshuo Jiang , Xin Cui , Guanghuan Ma , Tianyi Ma","doi":"10.1016/j.enchem.2023.100114","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical carbon dioxide reduction (CO<sub>2</sub>RR) to chemicals and fuels is a promising way to alleviate global environmental problems and energy issues. Among the various catalysts, metal-nitrogen-carbon (M–N–C) single-atom catalysts (SACs) have intrigued great excitement in catalysis due to their low cost and high efficiency. However, precisely identifying the active site structure at an atomic level and disclosing the structure-performance relationship remains a grand challenge. In this review, the active structures of the M–N–C catalysts in CO<sub>2</sub>RR are first summarized, including isolated metal-N<em><sub>x</sub></em> (<em>x</em> = 2, 3, 4, 5) sites, dual-metal centers, and the crucial role of substrates. Subsequently, the role of active structure in changing the adsorption properties of reactants toward CO<sub>2</sub>RR is discussed. In particular, the structure-performance relationship and constructive strategies to optimize the CO<sub>2</sub>RR pathway are highlighted. Finally, challenges and potential outlooks for the development of M–N–C SACs toward CO<sub>2</sub>RR are presented.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 6","pages":"Article 100114"},"PeriodicalIF":22.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589778023000179/pdfft?md5=c5cf2f867c8eeaea2ceb279824979d67&pid=1-s2.0-S2589778023000179-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Insight into the active sites of M–N–C single-atom catalysts for electrochemical CO2 reduction\",\"authors\":\"Qin Pan , Yang Chen , Shuoshuo Jiang , Xin Cui , Guanghuan Ma , Tianyi Ma\",\"doi\":\"10.1016/j.enchem.2023.100114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrochemical carbon dioxide reduction (CO<sub>2</sub>RR) to chemicals and fuels is a promising way to alleviate global environmental problems and energy issues. Among the various catalysts, metal-nitrogen-carbon (M–N–C) single-atom catalysts (SACs) have intrigued great excitement in catalysis due to their low cost and high efficiency. However, precisely identifying the active site structure at an atomic level and disclosing the structure-performance relationship remains a grand challenge. In this review, the active structures of the M–N–C catalysts in CO<sub>2</sub>RR are first summarized, including isolated metal-N<em><sub>x</sub></em> (<em>x</em> = 2, 3, 4, 5) sites, dual-metal centers, and the crucial role of substrates. Subsequently, the role of active structure in changing the adsorption properties of reactants toward CO<sub>2</sub>RR is discussed. In particular, the structure-performance relationship and constructive strategies to optimize the CO<sub>2</sub>RR pathway are highlighted. Finally, challenges and potential outlooks for the development of M–N–C SACs toward CO<sub>2</sub>RR are presented.</p></div>\",\"PeriodicalId\":307,\"journal\":{\"name\":\"EnergyChem\",\"volume\":\"5 6\",\"pages\":\"Article 100114\"},\"PeriodicalIF\":22.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589778023000179/pdfft?md5=c5cf2f867c8eeaea2ceb279824979d67&pid=1-s2.0-S2589778023000179-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589778023000179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778023000179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Insight into the active sites of M–N–C single-atom catalysts for electrochemical CO2 reduction
Electrochemical carbon dioxide reduction (CO2RR) to chemicals and fuels is a promising way to alleviate global environmental problems and energy issues. Among the various catalysts, metal-nitrogen-carbon (M–N–C) single-atom catalysts (SACs) have intrigued great excitement in catalysis due to their low cost and high efficiency. However, precisely identifying the active site structure at an atomic level and disclosing the structure-performance relationship remains a grand challenge. In this review, the active structures of the M–N–C catalysts in CO2RR are first summarized, including isolated metal-Nx (x = 2, 3, 4, 5) sites, dual-metal centers, and the crucial role of substrates. Subsequently, the role of active structure in changing the adsorption properties of reactants toward CO2RR is discussed. In particular, the structure-performance relationship and constructive strategies to optimize the CO2RR pathway are highlighted. Finally, challenges and potential outlooks for the development of M–N–C SACs toward CO2RR are presented.
期刊介绍:
EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage