Patricia Kasowanjete, Sathish Sundar Dhilip Kumar, Nicolette N. Houreld
{"title":"光生物调节PI3K/AKT/mTOR在伤口愈合中的研究进展","authors":"Patricia Kasowanjete, Sathish Sundar Dhilip Kumar, Nicolette N. Houreld","doi":"10.1016/j.jpap.2023.100215","DOIUrl":null,"url":null,"abstract":"<div><p>Wound healing involves a series of cellular and molecular processes to heal injured tissue. Growth factors such as vascular endothelial growth factor (VEGF), and signalling pathways such as phosphatidylinositol 3-kinase, protein kinase B, and mammalian target of rapamycin (PI3K/AKT/mTOR) are essential in wound healing. VEGF is linked to intracellular signalling pathways including PI3K/AKT/mTOR, which controls cell growth, metabolism, proliferation, apoptosis, and protein synthesis. During photobiomodulation (PBM), low-level light in the visible red and near-infrared (NIR) spectrum is employed to promote healing, and reduce pain, inflammation, and oedema. Several studies demonstrate that PBM enhances cellular survival, proliferation, migration, and viability in vitro<em>,</em> however, the exact cellular and molecular mechanisms responsible for these benefits have not yet been identified. The aim of this review is to explore the effects of PBM on the PI3K/AKT/mTOR signalling pathway in wound healing.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"19 ","pages":"Article 100215"},"PeriodicalIF":3.2610,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666469023000568/pdfft?md5=9ed078789ce41d6b57eccdb98dd37ee6&pid=1-s2.0-S2666469023000568-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A review of photobiomodulation on PI3K/AKT/mTOR in wound healing\",\"authors\":\"Patricia Kasowanjete, Sathish Sundar Dhilip Kumar, Nicolette N. Houreld\",\"doi\":\"10.1016/j.jpap.2023.100215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wound healing involves a series of cellular and molecular processes to heal injured tissue. Growth factors such as vascular endothelial growth factor (VEGF), and signalling pathways such as phosphatidylinositol 3-kinase, protein kinase B, and mammalian target of rapamycin (PI3K/AKT/mTOR) are essential in wound healing. VEGF is linked to intracellular signalling pathways including PI3K/AKT/mTOR, which controls cell growth, metabolism, proliferation, apoptosis, and protein synthesis. During photobiomodulation (PBM), low-level light in the visible red and near-infrared (NIR) spectrum is employed to promote healing, and reduce pain, inflammation, and oedema. Several studies demonstrate that PBM enhances cellular survival, proliferation, migration, and viability in vitro<em>,</em> however, the exact cellular and molecular mechanisms responsible for these benefits have not yet been identified. The aim of this review is to explore the effects of PBM on the PI3K/AKT/mTOR signalling pathway in wound healing.</p></div>\",\"PeriodicalId\":375,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology\",\"volume\":\"19 \",\"pages\":\"Article 100215\"},\"PeriodicalIF\":3.2610,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666469023000568/pdfft?md5=9ed078789ce41d6b57eccdb98dd37ee6&pid=1-s2.0-S2666469023000568-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666469023000568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology","FirstCategoryId":"2","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666469023000568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A review of photobiomodulation on PI3K/AKT/mTOR in wound healing
Wound healing involves a series of cellular and molecular processes to heal injured tissue. Growth factors such as vascular endothelial growth factor (VEGF), and signalling pathways such as phosphatidylinositol 3-kinase, protein kinase B, and mammalian target of rapamycin (PI3K/AKT/mTOR) are essential in wound healing. VEGF is linked to intracellular signalling pathways including PI3K/AKT/mTOR, which controls cell growth, metabolism, proliferation, apoptosis, and protein synthesis. During photobiomodulation (PBM), low-level light in the visible red and near-infrared (NIR) spectrum is employed to promote healing, and reduce pain, inflammation, and oedema. Several studies demonstrate that PBM enhances cellular survival, proliferation, migration, and viability in vitro, however, the exact cellular and molecular mechanisms responsible for these benefits have not yet been identified. The aim of this review is to explore the effects of PBM on the PI3K/AKT/mTOR signalling pathway in wound healing.