基于火烈鸟水母搜索优化的无线传感器网络数据通信能量预测算法。

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Network-Computation in Neural Systems Pub Date : 2024-02-01 Epub Date: 2024-02-08 DOI:10.1080/0954898X.2023.2279971
Dhanabal Subramanian, Sangeetha Subramaniam, Krishnamoorthy Natarajan, Kumaravel Thangavel
{"title":"基于火烈鸟水母搜索优化的无线传感器网络数据通信能量预测算法。","authors":"Dhanabal Subramanian, Sangeetha Subramaniam, Krishnamoorthy Natarajan, Kumaravel Thangavel","doi":"10.1080/0954898X.2023.2279971","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, wireless sensor networks (WSN) have gained huge attention worldwide due to their wide applications in different domains. The limited amount of energy resources is considered as the main limitations of WSN, which generally affect the network life time. Hence, a dynamic clustering and routing model is designed to resolve this issue. In this research work, a deep-learning model is employed for the prediction of energy and an optimization algorithmic technique is designed for the determination of optimal routes. Initially, the dynamic cluster WSN is simulated using energy, mobility, trust, and Link Life Time (LLT) models. The deep neuro-fuzzy network (DNFN) is utilized for the prediction of residual energy of nodes and the cluster workloads are dynamically balanced by the dynamic clustering of data using a fuzzy system. The designed Flamingo Jellyfish Search Optimization (FJSO) model is used for tuning the weights of the fuzzy system by considering different fitness parameters. Moreover, routing is performed using FJSO model which is used for the identification of optimal path to transmit data. In addition, the experimentation is done using MATLAB tool and the results proved that the designed FJSO model attained maximum of 0.657J energy, a minimum of 0.739 m distance, 0.649 s delay, 0.849 trust, and 0.885 Mbps throughput.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"73-100"},"PeriodicalIF":1.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flamingo Jelly Fish search optimization-based routing with deep-learning enabled energy prediction in WSN data communication.\",\"authors\":\"Dhanabal Subramanian, Sangeetha Subramaniam, Krishnamoorthy Natarajan, Kumaravel Thangavel\",\"doi\":\"10.1080/0954898X.2023.2279971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nowadays, wireless sensor networks (WSN) have gained huge attention worldwide due to their wide applications in different domains. The limited amount of energy resources is considered as the main limitations of WSN, which generally affect the network life time. Hence, a dynamic clustering and routing model is designed to resolve this issue. In this research work, a deep-learning model is employed for the prediction of energy and an optimization algorithmic technique is designed for the determination of optimal routes. Initially, the dynamic cluster WSN is simulated using energy, mobility, trust, and Link Life Time (LLT) models. The deep neuro-fuzzy network (DNFN) is utilized for the prediction of residual energy of nodes and the cluster workloads are dynamically balanced by the dynamic clustering of data using a fuzzy system. The designed Flamingo Jellyfish Search Optimization (FJSO) model is used for tuning the weights of the fuzzy system by considering different fitness parameters. Moreover, routing is performed using FJSO model which is used for the identification of optimal path to transmit data. In addition, the experimentation is done using MATLAB tool and the results proved that the designed FJSO model attained maximum of 0.657J energy, a minimum of 0.739 m distance, 0.649 s delay, 0.849 trust, and 0.885 Mbps throughput.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"73-100\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2023.2279971\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2279971","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

目前,无线传感器网络由于在各个领域的广泛应用,在世界范围内受到了广泛的关注。有限的能量资源被认为是WSN的主要限制,它通常会影响网络的寿命。因此,设计了一个动态集群和路由模型来解决这个问题。在本研究中,采用深度学习模型进行能量预测,设计优化算法技术确定最优路线。首先,使用能量、移动性、信任和链路生命时间(LLT)模型对动态集群WSN进行仿真。利用深度神经模糊网络(DNFN)预测节点的剩余能量,并利用模糊系统对数据进行动态聚类,实现集群工作负载的动态平衡。采用设计的火烈鸟水母搜索优化(FJSO)模型,通过考虑不同适应度参数对模糊系统的权重进行调整。此外,采用FJSO模型进行路由,该模型用于识别传输数据的最优路径。实验结果表明,所设计的FJSO模型最大能量为0.6557 j,最小距离为0.739 m,时延为0.649 s,信任度为0.849,吞吐量为0.885 Mbps。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flamingo Jelly Fish search optimization-based routing with deep-learning enabled energy prediction in WSN data communication.

Nowadays, wireless sensor networks (WSN) have gained huge attention worldwide due to their wide applications in different domains. The limited amount of energy resources is considered as the main limitations of WSN, which generally affect the network life time. Hence, a dynamic clustering and routing model is designed to resolve this issue. In this research work, a deep-learning model is employed for the prediction of energy and an optimization algorithmic technique is designed for the determination of optimal routes. Initially, the dynamic cluster WSN is simulated using energy, mobility, trust, and Link Life Time (LLT) models. The deep neuro-fuzzy network (DNFN) is utilized for the prediction of residual energy of nodes and the cluster workloads are dynamically balanced by the dynamic clustering of data using a fuzzy system. The designed Flamingo Jellyfish Search Optimization (FJSO) model is used for tuning the weights of the fuzzy system by considering different fitness parameters. Moreover, routing is performed using FJSO model which is used for the identification of optimal path to transmit data. In addition, the experimentation is done using MATLAB tool and the results proved that the designed FJSO model attained maximum of 0.657J energy, a minimum of 0.739 m distance, 0.649 s delay, 0.849 trust, and 0.885 Mbps throughput.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信