扇贝和蜗牛心脏结构和转录组的比较分析,心脏室进化的观点。

IF 5.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Marine Life Science & Technology Pub Date : 2023-11-17 eCollection Date: 2023-11-01 DOI:10.1007/s42995-023-00202-0
Meina Lu, Rabia Hayat, Xuejiao Zhang, Yaqi Jiao, Jianyun Huang, Yifan Huangfu, Mingcan Jiang, Jieyi Fu, Qingqiu Jiang, Yaojia Gu, Shi Wang, Alexander A Akerberg, Ying Su, Long Zhao
{"title":"扇贝和蜗牛心脏结构和转录组的比较分析,心脏室进化的观点。","authors":"Meina Lu, Rabia Hayat, Xuejiao Zhang, Yaqi Jiao, Jianyun Huang, Yifan Huangfu, Mingcan Jiang, Jieyi Fu, Qingqiu Jiang, Yaojia Gu, Shi Wang, Alexander A Akerberg, Ying Su, Long Zhao","doi":"10.1007/s42995-023-00202-0","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of a two-chambered heart, with an atrium and a ventricle, has improved heart function in both deuterostomes (vertebrates) and some protostomes (invertebrates). Although studies have examined the unique structure and function of these two chambers, molecular comparisons are few and limited to vertebrates. Here, we focus on the two-chambered protostome heart of the mollusks, offering data that may provide a better understanding of heart evolution. Specifically, we asked if the atrium and ventricle differ at the molecular level in the mollusk heart. To do so, we examined two very different species, the giant African land snail (<i>Lissachatina fulica</i>) and the relatively small, aquatic yesso scallop (<i>Mizuhopecten yessoensis</i>), with the assumption that if they exhibited commonality these similarities would likely reflect those across the phylum. We found that, although the hearts of these two species differed histologically, their cardiac gene function enrichments were similar, as revealed by transcriptomic analysis. Furthermore, the atrium and ventricle in each species had distinct gene function clusters, suggesting an evolutionary differentiation of cardiac chambers in mollusks. Finally, to explore the relationship between vertebrate and invertebrate two-chambered hearts, we compared our transcriptomic data with published data from the zebrafish, a well-studied vertebrate model with a two-chambered heart. Our analysis indicated a functional similarity of ventricular genes between the mollusks and the zebrafish, suggesting that the ventricle was differentiated to achieve the same functions in invertebrates and vertebrates. As the first such study on protostomes, our findings offered initial insights into how the two-chambered heart arose, including a possible understanding of its occurrence in both protostomes and deuterostomes.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00202-0.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689705/pdf/","citationCount":"1","resultStr":"{\"title\":\"Comparative analysis of the cardiac structure and transcriptome of scallop and snail, perspectives on heart chamber evolution.\",\"authors\":\"Meina Lu, Rabia Hayat, Xuejiao Zhang, Yaqi Jiao, Jianyun Huang, Yifan Huangfu, Mingcan Jiang, Jieyi Fu, Qingqiu Jiang, Yaojia Gu, Shi Wang, Alexander A Akerberg, Ying Su, Long Zhao\",\"doi\":\"10.1007/s42995-023-00202-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The evolution of a two-chambered heart, with an atrium and a ventricle, has improved heart function in both deuterostomes (vertebrates) and some protostomes (invertebrates). Although studies have examined the unique structure and function of these two chambers, molecular comparisons are few and limited to vertebrates. Here, we focus on the two-chambered protostome heart of the mollusks, offering data that may provide a better understanding of heart evolution. Specifically, we asked if the atrium and ventricle differ at the molecular level in the mollusk heart. To do so, we examined two very different species, the giant African land snail (<i>Lissachatina fulica</i>) and the relatively small, aquatic yesso scallop (<i>Mizuhopecten yessoensis</i>), with the assumption that if they exhibited commonality these similarities would likely reflect those across the phylum. We found that, although the hearts of these two species differed histologically, their cardiac gene function enrichments were similar, as revealed by transcriptomic analysis. Furthermore, the atrium and ventricle in each species had distinct gene function clusters, suggesting an evolutionary differentiation of cardiac chambers in mollusks. Finally, to explore the relationship between vertebrate and invertebrate two-chambered hearts, we compared our transcriptomic data with published data from the zebrafish, a well-studied vertebrate model with a two-chambered heart. Our analysis indicated a functional similarity of ventricular genes between the mollusks and the zebrafish, suggesting that the ventricle was differentiated to achieve the same functions in invertebrates and vertebrates. As the first such study on protostomes, our findings offered initial insights into how the two-chambered heart arose, including a possible understanding of its occurrence in both protostomes and deuterostomes.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00202-0.</p>\",\"PeriodicalId\":53218,\"journal\":{\"name\":\"Marine Life Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689705/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Life Science & Technology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42995-023-00202-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-023-00202-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

具有心房和心室的双腔心脏的进化改善了后口动物(脊椎动物)和一些原口动物(无脊椎动物)的心脏功能。虽然研究已经检查了这两个腔室的独特结构和功能,但分子比较很少,而且仅限于脊椎动物。在这里,我们关注的是软体动物的双腔原石心脏,提供的数据可以更好地理解心脏的进化。具体来说,我们询问软体动物心脏的心房和心室在分子水平上是否不同。为了做到这一点,我们研究了两个非常不同的物种,巨型非洲陆地蜗牛(Lissachatina fulica)和相对较小的水生扇贝(Mizuhopecten yessoensis),假设如果它们表现出共性,这些相似性可能反映了整个门的相似性。我们发现,尽管这两个物种的心脏在组织学上存在差异,但转录组学分析显示,它们的心脏基因功能富集程度相似。此外,每个物种的心房和心室具有不同的基因功能簇,表明软体动物的心脏室存在进化分化。最后,为了探索脊椎动物和无脊椎动物双室心脏之间的关系,我们将我们的转录组学数据与斑马鱼的公开数据进行了比较,斑马鱼是一种研究得很好的脊椎动物模型,具有双室心脏。我们的分析表明,软体动物和斑马鱼的脑室基因在功能上具有相似性,这表明无脊椎动物和脊椎动物的脑室是通过分化来实现相同功能的。作为对原口动物的首次研究,我们的发现为双腔心脏的产生提供了初步的见解,包括对其在原口动物和后口动物中的发生的可能理解。补充信息:在线版本包含补充资料,下载地址为10.1007/s42995-023-00202-0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of the cardiac structure and transcriptome of scallop and snail, perspectives on heart chamber evolution.

The evolution of a two-chambered heart, with an atrium and a ventricle, has improved heart function in both deuterostomes (vertebrates) and some protostomes (invertebrates). Although studies have examined the unique structure and function of these two chambers, molecular comparisons are few and limited to vertebrates. Here, we focus on the two-chambered protostome heart of the mollusks, offering data that may provide a better understanding of heart evolution. Specifically, we asked if the atrium and ventricle differ at the molecular level in the mollusk heart. To do so, we examined two very different species, the giant African land snail (Lissachatina fulica) and the relatively small, aquatic yesso scallop (Mizuhopecten yessoensis), with the assumption that if they exhibited commonality these similarities would likely reflect those across the phylum. We found that, although the hearts of these two species differed histologically, their cardiac gene function enrichments were similar, as revealed by transcriptomic analysis. Furthermore, the atrium and ventricle in each species had distinct gene function clusters, suggesting an evolutionary differentiation of cardiac chambers in mollusks. Finally, to explore the relationship between vertebrate and invertebrate two-chambered hearts, we compared our transcriptomic data with published data from the zebrafish, a well-studied vertebrate model with a two-chambered heart. Our analysis indicated a functional similarity of ventricular genes between the mollusks and the zebrafish, suggesting that the ventricle was differentiated to achieve the same functions in invertebrates and vertebrates. As the first such study on protostomes, our findings offered initial insights into how the two-chambered heart arose, including a possible understanding of its occurrence in both protostomes and deuterostomes.

Supplementary information: The online version contains supplementary material available at 10.1007/s42995-023-00202-0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Life Science & Technology
Marine Life Science & Technology MARINE & FRESHWATER BIOLOGY-
CiteScore
9.60
自引率
10.50%
发文量
58
期刊介绍: Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats. The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信