{"title":"解析响应力的动力学:通过Go/No-Go和stop信号任务研究运动约束和运动取消。","authors":"Zijian Wang, Xinyu Liu, Xiangqian Li","doi":"10.1177/17470218231219867","DOIUrl":null,"url":null,"abstract":"<p><p>Prior research has found that the go/no-go (GNG) task primarily reflects participants' motor-restraint process, while the stop-signal task (SST) primarily represents participants' motor-cancellation process. However, traditional binary keyboards used in these experiments are unable to capture the subtleties of sub-threshold response-force dynamics. This has led to the neglect of potential sub-threshold motor-inhibition processes. In two experiments, we explored sub-threshold inhibition by using a custom force-sensitive keyboard to record response force in both GNG and SST. In experiment 1, participants displayed increased response force when correctly rejecting no-go targets in the GNG task compared to the baseline. In addition, they exhibited higher response force in hit trials than in false alarms, revealing engagement of both motor-restraint and motor-cancellation processes in GNG. Initially, participants utilised motor restraint, but if it failed to prevent inappropriate responses, they employed motor cancellation to stop responses before reaching the keypress threshold. In experiment 2, we used participants' average response-force amplitude and response-force latency in SST stop trials to characterise the motor-cancellation process. Average amplitude significantly predicted false-alarm rates in the GNG task, but the relationship between response latency and false-alarm rates was insignificant. We hypothesised that response latency reflects reactive inhibition control in motor cancellation, whereas average amplitude indicates proactive inhibition control. Our findings underscore the complexity of motor inhibition.</p>","PeriodicalId":20869,"journal":{"name":"Quarterly Journal of Experimental Psychology","volume":" ","pages":"2199-2213"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling the dynamics of response force: Investigating motor restraint and motor cancellation through go/no-go and stop-signal tasks.\",\"authors\":\"Zijian Wang, Xinyu Liu, Xiangqian Li\",\"doi\":\"10.1177/17470218231219867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prior research has found that the go/no-go (GNG) task primarily reflects participants' motor-restraint process, while the stop-signal task (SST) primarily represents participants' motor-cancellation process. However, traditional binary keyboards used in these experiments are unable to capture the subtleties of sub-threshold response-force dynamics. This has led to the neglect of potential sub-threshold motor-inhibition processes. In two experiments, we explored sub-threshold inhibition by using a custom force-sensitive keyboard to record response force in both GNG and SST. In experiment 1, participants displayed increased response force when correctly rejecting no-go targets in the GNG task compared to the baseline. In addition, they exhibited higher response force in hit trials than in false alarms, revealing engagement of both motor-restraint and motor-cancellation processes in GNG. Initially, participants utilised motor restraint, but if it failed to prevent inappropriate responses, they employed motor cancellation to stop responses before reaching the keypress threshold. In experiment 2, we used participants' average response-force amplitude and response-force latency in SST stop trials to characterise the motor-cancellation process. Average amplitude significantly predicted false-alarm rates in the GNG task, but the relationship between response latency and false-alarm rates was insignificant. We hypothesised that response latency reflects reactive inhibition control in motor cancellation, whereas average amplitude indicates proactive inhibition control. Our findings underscore the complexity of motor inhibition.</p>\",\"PeriodicalId\":20869,\"journal\":{\"name\":\"Quarterly Journal of Experimental Psychology\",\"volume\":\" \",\"pages\":\"2199-2213\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Experimental Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/17470218231219867\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Experimental Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/17470218231219867","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Unravelling the dynamics of response force: Investigating motor restraint and motor cancellation through go/no-go and stop-signal tasks.
Prior research has found that the go/no-go (GNG) task primarily reflects participants' motor-restraint process, while the stop-signal task (SST) primarily represents participants' motor-cancellation process. However, traditional binary keyboards used in these experiments are unable to capture the subtleties of sub-threshold response-force dynamics. This has led to the neglect of potential sub-threshold motor-inhibition processes. In two experiments, we explored sub-threshold inhibition by using a custom force-sensitive keyboard to record response force in both GNG and SST. In experiment 1, participants displayed increased response force when correctly rejecting no-go targets in the GNG task compared to the baseline. In addition, they exhibited higher response force in hit trials than in false alarms, revealing engagement of both motor-restraint and motor-cancellation processes in GNG. Initially, participants utilised motor restraint, but if it failed to prevent inappropriate responses, they employed motor cancellation to stop responses before reaching the keypress threshold. In experiment 2, we used participants' average response-force amplitude and response-force latency in SST stop trials to characterise the motor-cancellation process. Average amplitude significantly predicted false-alarm rates in the GNG task, but the relationship between response latency and false-alarm rates was insignificant. We hypothesised that response latency reflects reactive inhibition control in motor cancellation, whereas average amplitude indicates proactive inhibition control. Our findings underscore the complexity of motor inhibition.
期刊介绍:
Promoting the interests of scientific psychology and its researchers, QJEP, the journal of the Experimental Psychology Society, is a leading journal with a long-standing tradition of publishing cutting-edge research. Several articles have become classic papers in the fields of attention, perception, learning, memory, language, and reasoning. The journal publishes original articles on any topic within the field of experimental psychology (including comparative research). These include substantial experimental reports, review papers, rapid communications (reporting novel techniques or ground breaking results), comments (on articles previously published in QJEP or on issues of general interest to experimental psychologists), and book reviews. Experimental results are welcomed from all relevant techniques, including behavioural testing, brain imaging and computational modelling.
QJEP offers a competitive publication time-scale. Accepted Rapid Communications have priority in the publication cycle and usually appear in print within three months. We aim to publish all accepted (but uncorrected) articles online within seven days. Our Latest Articles page offers immediate publication of articles upon reaching their final form.
The journal offers an open access option called Open Select, enabling authors to meet funder requirements to make their article free to read online for all in perpetuity. Authors also benefit from a broad and diverse subscription base that delivers the journal contents to a world-wide readership. Together these features ensure that the journal offers authors the opportunity to raise the visibility of their work to a global audience.