{"title":"高效控制单对虾哈威弧菌的新型裂解噬菌体VPMCC14的鉴定。","authors":"Priyanka Kar, Smita Ghosh, Pijush Payra, Sudipta Chakrabarti, Shrabani Pradhan, Keshab Ch Mondal, Kuntal Ghosh","doi":"10.1007/s10123-023-00456-9","DOIUrl":null,"url":null,"abstract":"<p><p>Vibrio harveyi causes luminous vibriosis diseases in shrimp, which lead to shrimp mortalities. Considering the emergence of antibiotic-resistant bacteria, a Vibrio-infecting bacteriophage, VPMCC14, was characterized, and its lysis ability was evaluated on a laboratory scale. VPMCC14 was shown to infect V. harveyi S5A and V. harveyi ATCC 14126. VPMCC14 also exhibited a latent period of 30 min, with a burst size of 38 PFU/cell on its propagation strain. The bacteriophage was stable at a wide range of pHs (3-9), temperatures (0-45°C), and salinities (up to 40 ppt). VPMCC14 exhibited strict virulence properties as the bacteriophage entirely lysed V. harveyi S5A in liquid culture inhibition after 5 h and 4 h at very low MOIs such as MOI 0.1 and MOI 1, respectively. VPMCC14 could control V. harveyi infection in aquariums at MOI 1 and decrease the mortality of Penaeus monodon challenged by V. harveyi. VPMCC14 genome was 134,472 bp long with a 34.5 G+C% content, and 240 open reading frames. A unique characteristic of VPMCC14 was the presence of the HicB family antitoxin-coding open reading frame. Comparative genomic analyses suggested that VPMCC14 could be a representative of a new genus in the Caudoviricetes class. This novel bacteriophage, VPMCC14, could be applied as a biocontrol agent for controlling V. harveyi infection.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of a novel lytic bacteriophage VPMCC14 which efficiently controls Vibrio harveyi in Penaeus monodon culture.\",\"authors\":\"Priyanka Kar, Smita Ghosh, Pijush Payra, Sudipta Chakrabarti, Shrabani Pradhan, Keshab Ch Mondal, Kuntal Ghosh\",\"doi\":\"10.1007/s10123-023-00456-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vibrio harveyi causes luminous vibriosis diseases in shrimp, which lead to shrimp mortalities. Considering the emergence of antibiotic-resistant bacteria, a Vibrio-infecting bacteriophage, VPMCC14, was characterized, and its lysis ability was evaluated on a laboratory scale. VPMCC14 was shown to infect V. harveyi S5A and V. harveyi ATCC 14126. VPMCC14 also exhibited a latent period of 30 min, with a burst size of 38 PFU/cell on its propagation strain. The bacteriophage was stable at a wide range of pHs (3-9), temperatures (0-45°C), and salinities (up to 40 ppt). VPMCC14 exhibited strict virulence properties as the bacteriophage entirely lysed V. harveyi S5A in liquid culture inhibition after 5 h and 4 h at very low MOIs such as MOI 0.1 and MOI 1, respectively. VPMCC14 could control V. harveyi infection in aquariums at MOI 1 and decrease the mortality of Penaeus monodon challenged by V. harveyi. VPMCC14 genome was 134,472 bp long with a 34.5 G+C% content, and 240 open reading frames. A unique characteristic of VPMCC14 was the presence of the HicB family antitoxin-coding open reading frame. Comparative genomic analyses suggested that VPMCC14 could be a representative of a new genus in the Caudoviricetes class. This novel bacteriophage, VPMCC14, could be applied as a biocontrol agent for controlling V. harveyi infection.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-023-00456-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-023-00456-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Characterization of a novel lytic bacteriophage VPMCC14 which efficiently controls Vibrio harveyi in Penaeus monodon culture.
Vibrio harveyi causes luminous vibriosis diseases in shrimp, which lead to shrimp mortalities. Considering the emergence of antibiotic-resistant bacteria, a Vibrio-infecting bacteriophage, VPMCC14, was characterized, and its lysis ability was evaluated on a laboratory scale. VPMCC14 was shown to infect V. harveyi S5A and V. harveyi ATCC 14126. VPMCC14 also exhibited a latent period of 30 min, with a burst size of 38 PFU/cell on its propagation strain. The bacteriophage was stable at a wide range of pHs (3-9), temperatures (0-45°C), and salinities (up to 40 ppt). VPMCC14 exhibited strict virulence properties as the bacteriophage entirely lysed V. harveyi S5A in liquid culture inhibition after 5 h and 4 h at very low MOIs such as MOI 0.1 and MOI 1, respectively. VPMCC14 could control V. harveyi infection in aquariums at MOI 1 and decrease the mortality of Penaeus monodon challenged by V. harveyi. VPMCC14 genome was 134,472 bp long with a 34.5 G+C% content, and 240 open reading frames. A unique characteristic of VPMCC14 was the presence of the HicB family antitoxin-coding open reading frame. Comparative genomic analyses suggested that VPMCC14 could be a representative of a new genus in the Caudoviricetes class. This novel bacteriophage, VPMCC14, could be applied as a biocontrol agent for controlling V. harveyi infection.