Tiantian Dong, Shenghang Zhang, Zhongqin Ren, Lang Huang, Gaojie Xu, Tao Liu, Shitao Wang, Guanglei Cui
{"title":"面向高性能高镍(Ni≥80%)锂离子电池的电解质工程。","authors":"Tiantian Dong, Shenghang Zhang, Zhongqin Ren, Lang Huang, Gaojie Xu, Tao Liu, Shitao Wang, Guanglei Cui","doi":"10.1002/advs.202305753","DOIUrl":null,"url":null,"abstract":"<p>High nickel (Ni ≥ 80%) lithium-ion batteries (LIBs) with high specific energy are one of the most important technical routes to resolve the growing endurance anxieties. However, because of their extremely aggressive chemistries, high-Ni (Ni ≥ 80%) LIBs suffer from poor cycle life and safety performance, which hinder their large-scale commercial applications. Among varied strategies, electrolyte engineering is very powerful to simultaneously enhance the cycle life and safety of high-Ni (Ni ≥ 80%) LIBs. In this review, the pivotal challenges faced by high-Ni oxide cathodes and conventional LiPF<sub>6</sub>-carbonate-based electrolytes are comprehensively summarized. Then, the functional additives design guidelines for LiPF<sub>6</sub>-carbonate -based electrolytes and the design principles of high voltage resistance/high safety novel electrolytes are systematically elaborated to resolve these pivotal challenges. Moreover, the proposed thermal runaway mechanisms of high-Ni (Ni ≥ 80%) LIBs are also reviewed to provide useful perspectives for the design of high-safety electrolytes. Finally, the potential research directions of electrolyte engineering toward high-performance high-Ni (Ni ≥ 80%) LIBs are provided. This review will have an important impact on electrolyte innovation as well as the commercial evolution of high-Ni (Ni ≥ 80%) LIBs, and also will be significant to breakthrough the energy density ceiling of LIBs.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"11 7","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202305753","citationCount":"0","resultStr":"{\"title\":\"Electrolyte Engineering Toward High Performance High Nickel (Ni ≥ 80%) Lithium-Ion Batteries\",\"authors\":\"Tiantian Dong, Shenghang Zhang, Zhongqin Ren, Lang Huang, Gaojie Xu, Tao Liu, Shitao Wang, Guanglei Cui\",\"doi\":\"10.1002/advs.202305753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High nickel (Ni ≥ 80%) lithium-ion batteries (LIBs) with high specific energy are one of the most important technical routes to resolve the growing endurance anxieties. However, because of their extremely aggressive chemistries, high-Ni (Ni ≥ 80%) LIBs suffer from poor cycle life and safety performance, which hinder their large-scale commercial applications. Among varied strategies, electrolyte engineering is very powerful to simultaneously enhance the cycle life and safety of high-Ni (Ni ≥ 80%) LIBs. In this review, the pivotal challenges faced by high-Ni oxide cathodes and conventional LiPF<sub>6</sub>-carbonate-based electrolytes are comprehensively summarized. Then, the functional additives design guidelines for LiPF<sub>6</sub>-carbonate -based electrolytes and the design principles of high voltage resistance/high safety novel electrolytes are systematically elaborated to resolve these pivotal challenges. Moreover, the proposed thermal runaway mechanisms of high-Ni (Ni ≥ 80%) LIBs are also reviewed to provide useful perspectives for the design of high-safety electrolytes. Finally, the potential research directions of electrolyte engineering toward high-performance high-Ni (Ni ≥ 80%) LIBs are provided. This review will have an important impact on electrolyte innovation as well as the commercial evolution of high-Ni (Ni ≥ 80%) LIBs, and also will be significant to breakthrough the energy density ceiling of LIBs.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"11 7\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2023-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202305753\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202305753\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202305753","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrolyte Engineering Toward High Performance High Nickel (Ni ≥ 80%) Lithium-Ion Batteries
High nickel (Ni ≥ 80%) lithium-ion batteries (LIBs) with high specific energy are one of the most important technical routes to resolve the growing endurance anxieties. However, because of their extremely aggressive chemistries, high-Ni (Ni ≥ 80%) LIBs suffer from poor cycle life and safety performance, which hinder their large-scale commercial applications. Among varied strategies, electrolyte engineering is very powerful to simultaneously enhance the cycle life and safety of high-Ni (Ni ≥ 80%) LIBs. In this review, the pivotal challenges faced by high-Ni oxide cathodes and conventional LiPF6-carbonate-based electrolytes are comprehensively summarized. Then, the functional additives design guidelines for LiPF6-carbonate -based electrolytes and the design principles of high voltage resistance/high safety novel electrolytes are systematically elaborated to resolve these pivotal challenges. Moreover, the proposed thermal runaway mechanisms of high-Ni (Ni ≥ 80%) LIBs are also reviewed to provide useful perspectives for the design of high-safety electrolytes. Finally, the potential research directions of electrolyte engineering toward high-performance high-Ni (Ni ≥ 80%) LIBs are provided. This review will have an important impact on electrolyte innovation as well as the commercial evolution of high-Ni (Ni ≥ 80%) LIBs, and also will be significant to breakthrough the energy density ceiling of LIBs.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.