Tao Deng, Xiumian Hu, David Chew, Jan Schönig, Anlin Ma, Wendong Liang, Foteini Drakou
{"title":"多代物源方法揭示的大别造山带早侏罗世现代水系格局","authors":"Tao Deng, Xiumian Hu, David Chew, Jan Schönig, Anlin Ma, Wendong Liang, Foteini Drakou","doi":"10.1111/bre.12834","DOIUrl":null,"url":null,"abstract":"<p>The timing of the initiation of the present-day tectonic architecture and drainage systems in eastern China remains debated. This study presents a comprehensive provenance study of the Early Jurassic peripheral basins surrounding the Dabie orogen including framework petrography, heavy-mineral analysis, single-grain chronology and chemistry. Clasts of high-grade schist, muscovite grains, rare gneissic fragments, abundant metamorphic garnet and phengite (Si > 3.3 pfu), combined with a main 216–256 Ma rutile U–Pb population found in these Early Jurassic sandstones, indicate a source from the Triassic (U)HP belt in the Dabie orogen. Sedimentary lithics and ultra-stable heavy-mineral assemblages indicate an additional source of recycled sedimentary rocks. Combined with the continuous shift of the youngest detrital rutile age population toward younger ages toward the north that mimics the pattern of metamorphic bedrock ages in the Dabie orogen, we infer that the present surface tectonic architecture and paleodrainage patterns of the Dabie orogen were established in the Early Jurassic. Thus, the Early Jurassic exhumation of the Dabie orogen marked the development of the watershed between Northern and Southern China, namely the Huai River and several principal tributary systems of the middle-lower Yangtze River.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early Jurassic initiation of the modern drainage pattern of the Dabie orogen (East China) revealed by a multi-proxy provenance approach\",\"authors\":\"Tao Deng, Xiumian Hu, David Chew, Jan Schönig, Anlin Ma, Wendong Liang, Foteini Drakou\",\"doi\":\"10.1111/bre.12834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The timing of the initiation of the present-day tectonic architecture and drainage systems in eastern China remains debated. This study presents a comprehensive provenance study of the Early Jurassic peripheral basins surrounding the Dabie orogen including framework petrography, heavy-mineral analysis, single-grain chronology and chemistry. Clasts of high-grade schist, muscovite grains, rare gneissic fragments, abundant metamorphic garnet and phengite (Si > 3.3 pfu), combined with a main 216–256 Ma rutile U–Pb population found in these Early Jurassic sandstones, indicate a source from the Triassic (U)HP belt in the Dabie orogen. Sedimentary lithics and ultra-stable heavy-mineral assemblages indicate an additional source of recycled sedimentary rocks. Combined with the continuous shift of the youngest detrital rutile age population toward younger ages toward the north that mimics the pattern of metamorphic bedrock ages in the Dabie orogen, we infer that the present surface tectonic architecture and paleodrainage patterns of the Dabie orogen were established in the Early Jurassic. Thus, the Early Jurassic exhumation of the Dabie orogen marked the development of the watershed between Northern and Southern China, namely the Huai River and several principal tributary systems of the middle-lower Yangtze River.</p>\",\"PeriodicalId\":8712,\"journal\":{\"name\":\"Basin Research\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basin Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bre.12834\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.12834","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Early Jurassic initiation of the modern drainage pattern of the Dabie orogen (East China) revealed by a multi-proxy provenance approach
The timing of the initiation of the present-day tectonic architecture and drainage systems in eastern China remains debated. This study presents a comprehensive provenance study of the Early Jurassic peripheral basins surrounding the Dabie orogen including framework petrography, heavy-mineral analysis, single-grain chronology and chemistry. Clasts of high-grade schist, muscovite grains, rare gneissic fragments, abundant metamorphic garnet and phengite (Si > 3.3 pfu), combined with a main 216–256 Ma rutile U–Pb population found in these Early Jurassic sandstones, indicate a source from the Triassic (U)HP belt in the Dabie orogen. Sedimentary lithics and ultra-stable heavy-mineral assemblages indicate an additional source of recycled sedimentary rocks. Combined with the continuous shift of the youngest detrital rutile age population toward younger ages toward the north that mimics the pattern of metamorphic bedrock ages in the Dabie orogen, we infer that the present surface tectonic architecture and paleodrainage patterns of the Dabie orogen were established in the Early Jurassic. Thus, the Early Jurassic exhumation of the Dabie orogen marked the development of the watershed between Northern and Southern China, namely the Huai River and several principal tributary systems of the middle-lower Yangtze River.
期刊介绍:
Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.