{"title":"注视条件下FRL“注视”的跳眼再参照训练:暗斑类型和大小适应的影响","authors":"Natalia Melnik , Stefan Pollmann","doi":"10.1016/j.visres.2023.108340","DOIUrl":null,"url":null,"abstract":"<div><p>Foveal vision loss<span><span> makes the fovea as saccadic reference point maladaptive. Training programs have been proposed that shift the saccadic reference point from the fovea to an extrafoveal location, just outside the area of vision loss. We used a visual search task to train normal-sighted participants to fixate target items with a predetermined 'forced retinal location' (FRL) adjacent to a simulated central scotoma. We found that training was comparatively successful for scotomata that had either a sharp or blurry demarcation from the background. Completing the task with sharp-edged scotoma resulted in overall higher training gains. Training with blurry-edged scotoma, however, yielded overall better results when scotoma size was increased after training and participants needed to adapt to a more eccentric FRL, as may be necessary </span>in patients<span> with progressive degenerative eye diseases.</span></span></p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saccadic re-referencing training with gaze-contingent FRL-'fixation': Effects of scotoma type and size adaptation\",\"authors\":\"Natalia Melnik , Stefan Pollmann\",\"doi\":\"10.1016/j.visres.2023.108340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Foveal vision loss<span><span> makes the fovea as saccadic reference point maladaptive. Training programs have been proposed that shift the saccadic reference point from the fovea to an extrafoveal location, just outside the area of vision loss. We used a visual search task to train normal-sighted participants to fixate target items with a predetermined 'forced retinal location' (FRL) adjacent to a simulated central scotoma. We found that training was comparatively successful for scotomata that had either a sharp or blurry demarcation from the background. Completing the task with sharp-edged scotoma resulted in overall higher training gains. Training with blurry-edged scotoma, however, yielded overall better results when scotoma size was increased after training and participants needed to adapt to a more eccentric FRL, as may be necessary </span>in patients<span> with progressive degenerative eye diseases.</span></span></p></div>\",\"PeriodicalId\":23670,\"journal\":{\"name\":\"Vision Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042698923001645\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698923001645","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Saccadic re-referencing training with gaze-contingent FRL-'fixation': Effects of scotoma type and size adaptation
Foveal vision loss makes the fovea as saccadic reference point maladaptive. Training programs have been proposed that shift the saccadic reference point from the fovea to an extrafoveal location, just outside the area of vision loss. We used a visual search task to train normal-sighted participants to fixate target items with a predetermined 'forced retinal location' (FRL) adjacent to a simulated central scotoma. We found that training was comparatively successful for scotomata that had either a sharp or blurry demarcation from the background. Completing the task with sharp-edged scotoma resulted in overall higher training gains. Training with blurry-edged scotoma, however, yielded overall better results when scotoma size was increased after training and participants needed to adapt to a more eccentric FRL, as may be necessary in patients with progressive degenerative eye diseases.
期刊介绍:
Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.