Amrita Srivathsan, Vivian Feng, Daniel Suárez, Brent Emerson, Rudolf Meier
{"title":"onbarcoder 2.0:利用Oxford Nanopore R10.4实现的实时条形码快速发现和鉴定物种。","authors":"Amrita Srivathsan, Vivian Feng, Daniel Suárez, Brent Emerson, Rudolf Meier","doi":"10.1111/cla.12566","DOIUrl":null,"url":null,"abstract":"<p>Most arthropod species are undescribed and hidden in specimen-rich samples that are difficult to sort to species using morphological characters. For such samples, sorting to putative species with DNA barcodes is an attractive alternative, but needs cost-effective techniques that are suitable for use in many laboratories around the world. Barcoding using the portable and inexpensive MinION sequencer produced by Oxford Nanopore Technologies (ONT) could be useful for presorting specimen-rich samples with DNA barcodes because it requires little space and is inexpensive. However, similarly important is user-friendly and reliable software for analysis of the ONT data. It is here provided in the form of ONTbarcoder 2.0 that is suitable for all commonly used operating systems and includes a Graphical User Interface (GUI). Compared with an earlier version, ONTbarcoder 2.0 has three key improvements related to the higher read quality obtained with ONT's latest flow cells (R10.4), chemistry (V14 kits) and basecalling model (super-accuracy model). First, the improved read quality of ONT's latest flow cells (R10.4) allows for the use of primers with shorter indices than those previously needed (9 bp vs. 12–13 bp). This decreases the primer cost and can potentially improve PCR success rates. Second, ONTbarcoder now delivers real-time barcoding to complement ONT's real-time sequencing. This means that the first barcodes are obtained within minutes of starting a sequencing run; i.e. flow cell use can be optimized by terminating sequencing runs when most barcodes have already been obtained. The only input needed by ONTbarcoder 2.0 is a demultiplexing sheet and sequencing data (raw or basecalled) generated by either a Mk1B or a Mk1C. Thirdly, we demonstrate that the availability of R10.4 chemistry for the low-cost Flongle flow cell is an attractive option for users who require only 200–250 barcodes at a time.</p>","PeriodicalId":50688,"journal":{"name":"Cladistics","volume":"40 2","pages":"192-203"},"PeriodicalIF":3.9000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cla.12566","citationCount":"0","resultStr":"{\"title\":\"ONTbarcoder 2.0: rapid species discovery and identification with real-time barcoding facilitated by Oxford Nanopore R10.4\",\"authors\":\"Amrita Srivathsan, Vivian Feng, Daniel Suárez, Brent Emerson, Rudolf Meier\",\"doi\":\"10.1111/cla.12566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most arthropod species are undescribed and hidden in specimen-rich samples that are difficult to sort to species using morphological characters. For such samples, sorting to putative species with DNA barcodes is an attractive alternative, but needs cost-effective techniques that are suitable for use in many laboratories around the world. Barcoding using the portable and inexpensive MinION sequencer produced by Oxford Nanopore Technologies (ONT) could be useful for presorting specimen-rich samples with DNA barcodes because it requires little space and is inexpensive. However, similarly important is user-friendly and reliable software for analysis of the ONT data. It is here provided in the form of ONTbarcoder 2.0 that is suitable for all commonly used operating systems and includes a Graphical User Interface (GUI). Compared with an earlier version, ONTbarcoder 2.0 has three key improvements related to the higher read quality obtained with ONT's latest flow cells (R10.4), chemistry (V14 kits) and basecalling model (super-accuracy model). First, the improved read quality of ONT's latest flow cells (R10.4) allows for the use of primers with shorter indices than those previously needed (9 bp vs. 12–13 bp). This decreases the primer cost and can potentially improve PCR success rates. Second, ONTbarcoder now delivers real-time barcoding to complement ONT's real-time sequencing. This means that the first barcodes are obtained within minutes of starting a sequencing run; i.e. flow cell use can be optimized by terminating sequencing runs when most barcodes have already been obtained. The only input needed by ONTbarcoder 2.0 is a demultiplexing sheet and sequencing data (raw or basecalled) generated by either a Mk1B or a Mk1C. Thirdly, we demonstrate that the availability of R10.4 chemistry for the low-cost Flongle flow cell is an attractive option for users who require only 200–250 barcodes at a time.</p>\",\"PeriodicalId\":50688,\"journal\":{\"name\":\"Cladistics\",\"volume\":\"40 2\",\"pages\":\"192-203\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cla.12566\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cladistics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cla.12566\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cladistics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cla.12566","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
ONTbarcoder 2.0: rapid species discovery and identification with real-time barcoding facilitated by Oxford Nanopore R10.4
Most arthropod species are undescribed and hidden in specimen-rich samples that are difficult to sort to species using morphological characters. For such samples, sorting to putative species with DNA barcodes is an attractive alternative, but needs cost-effective techniques that are suitable for use in many laboratories around the world. Barcoding using the portable and inexpensive MinION sequencer produced by Oxford Nanopore Technologies (ONT) could be useful for presorting specimen-rich samples with DNA barcodes because it requires little space and is inexpensive. However, similarly important is user-friendly and reliable software for analysis of the ONT data. It is here provided in the form of ONTbarcoder 2.0 that is suitable for all commonly used operating systems and includes a Graphical User Interface (GUI). Compared with an earlier version, ONTbarcoder 2.0 has three key improvements related to the higher read quality obtained with ONT's latest flow cells (R10.4), chemistry (V14 kits) and basecalling model (super-accuracy model). First, the improved read quality of ONT's latest flow cells (R10.4) allows for the use of primers with shorter indices than those previously needed (9 bp vs. 12–13 bp). This decreases the primer cost and can potentially improve PCR success rates. Second, ONTbarcoder now delivers real-time barcoding to complement ONT's real-time sequencing. This means that the first barcodes are obtained within minutes of starting a sequencing run; i.e. flow cell use can be optimized by terminating sequencing runs when most barcodes have already been obtained. The only input needed by ONTbarcoder 2.0 is a demultiplexing sheet and sequencing data (raw or basecalled) generated by either a Mk1B or a Mk1C. Thirdly, we demonstrate that the availability of R10.4 chemistry for the low-cost Flongle flow cell is an attractive option for users who require only 200–250 barcodes at a time.
期刊介绍:
Cladistics publishes high quality research papers on systematics, encouraging debate on all aspects of the field, from philosophy, theory and methodology to empirical studies and applications in biogeography, coevolution, conservation biology, ontogeny, genomics and paleontology.
Cladistics is read by scientists working in the research fields of evolution, systematics and integrative biology and enjoys a consistently high position in the ISI® rankings for evolutionary biology.