受压模型脊索在规则包装模式下的抗弯刚度。

IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology
Evan J. Curcio, Sharon R. Lubkin
{"title":"受压模型脊索在规则包装模式下的抗弯刚度。","authors":"Evan J. Curcio,&nbsp;Sharon R. Lubkin","doi":"10.1016/j.cdev.2023.203895","DOIUrl":null,"url":null,"abstract":"<div><p>The biomechanics of embryonic notochords are studied using an elastic membrane model. An initial study varying internal pressure and stiffness ratio determines tension and geometric ratios as a function of internal pressure, membrane stiffness ratio, and cell packing pattern. A subsequent three-point bending study determines flexural rigidity as a function of internal pressure, configuration, and orientation. Flexural rigidity is found to be independent of membrane stiffness ratio. Controlling for number and volume of cells and their internal pressure, the eccentric staircase pattern of cell packing has more than double the flexural rigidity of the radially symmetric bamboo pattern. Moreover, the eccentric staircase pattern is found to be more than twice as stiff in lateral bending than in dorsoventral bending. This suggests a mechanical advantage to the eccentric WT staircase pattern of the embryonic notochord, over patterns with round cross-section.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"177 ","pages":"Article 203895"},"PeriodicalIF":3.9000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667290123000712/pdfft?md5=5a97ce32cf370ad9c4a20001b0f334dc&pid=1-s2.0-S2667290123000712-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Flexural rigidity of pressurized model notochords in regular packing patterns\",\"authors\":\"Evan J. Curcio,&nbsp;Sharon R. Lubkin\",\"doi\":\"10.1016/j.cdev.2023.203895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The biomechanics of embryonic notochords are studied using an elastic membrane model. An initial study varying internal pressure and stiffness ratio determines tension and geometric ratios as a function of internal pressure, membrane stiffness ratio, and cell packing pattern. A subsequent three-point bending study determines flexural rigidity as a function of internal pressure, configuration, and orientation. Flexural rigidity is found to be independent of membrane stiffness ratio. Controlling for number and volume of cells and their internal pressure, the eccentric staircase pattern of cell packing has more than double the flexural rigidity of the radially symmetric bamboo pattern. Moreover, the eccentric staircase pattern is found to be more than twice as stiff in lateral bending than in dorsoventral bending. This suggests a mechanical advantage to the eccentric WT staircase pattern of the embryonic notochord, over patterns with round cross-section.</p></div>\",\"PeriodicalId\":36123,\"journal\":{\"name\":\"Cells and Development\",\"volume\":\"177 \",\"pages\":\"Article 203895\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667290123000712/pdfft?md5=5a97ce32cf370ad9c4a20001b0f334dc&pid=1-s2.0-S2667290123000712-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667290123000712\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667290123000712","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

采用弹性膜模型研究胚胎脊索的生物力学。一项初步研究表明,内部压力和刚度比的变化决定了张力和几何比作为内部压力、膜刚度比和细胞填充模式的函数。随后的三点弯曲研究确定了弯曲刚度作为内部压力、结构和方向的函数。发现抗弯刚度与膜刚度比无关。控制细胞的数量和体积及其内部压力,细胞排列的偏心阶梯模式的弯曲刚度是径向对称竹模式的两倍以上。此外,发现偏心楼梯模式在侧向弯曲时比背腹弯曲时僵硬两倍以上。这表明胚胎脊索的偏心WT阶梯型比圆形截面型具有机械优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexural rigidity of pressurized model notochords in regular packing patterns

The biomechanics of embryonic notochords are studied using an elastic membrane model. An initial study varying internal pressure and stiffness ratio determines tension and geometric ratios as a function of internal pressure, membrane stiffness ratio, and cell packing pattern. A subsequent three-point bending study determines flexural rigidity as a function of internal pressure, configuration, and orientation. Flexural rigidity is found to be independent of membrane stiffness ratio. Controlling for number and volume of cells and their internal pressure, the eccentric staircase pattern of cell packing has more than double the flexural rigidity of the radially symmetric bamboo pattern. Moreover, the eccentric staircase pattern is found to be more than twice as stiff in lateral bending than in dorsoventral bending. This suggests a mechanical advantage to the eccentric WT staircase pattern of the embryonic notochord, over patterns with round cross-section.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells and Development
Cells and Development Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
2.90
自引率
0.00%
发文量
33
审稿时长
41 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信