Bing Dai, Si Liu, Wenxin Shen, Li Chen, Qianlan Zhou, Lina Han, Qinzhen Zhang, Lishen Shan
{"title":"SYVN1通过促进SIRT2泛素化和降解在哮喘保护中控制气道重塑中的作用。","authors":"Bing Dai, Si Liu, Wenxin Shen, Li Chen, Qianlan Zhou, Lina Han, Qinzhen Zhang, Lishen Shan","doi":"10.1186/s40659-023-00478-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Asthma is a heterogenous disease that characterized by airway remodeling. SYVN1 (Synoviolin 1) acts as an E3 ligase to mediate the suppression of endoplasmic reticulum (ER) stress through ubiquitination and degradation. However, the role of SYVN1 in the pathogenesis of asthma is unclear.</p><p><strong>Results: </strong>In the present study, an ovalbumin (OVA)-induced murine model was used to evaluate the effect of SYVN1 on asthma. An increase in SYVN1 expression was observed in the lungs of mice after OVA induction. Overexpression of SYVN1 attenuated airway inflammation, goblet cell hyperplasia and collagen deposition induced by OVA. The increased ER stress-related proteins and altered epithelial-mesenchymal transition (EMT) markers were also inhibited by SYVN1 in vivo. Next, TGF-β1-induced bronchial epithelial cells (BEAS-2B) were used to induce EMT process in vitro. Results showed that TGF-β1 stimulation downregulated the expression of SYVN1, and SYVN1 overexpression prevented ER stress response and EMT process in TGF-β1-induced cells. In addition, we identified that SYVN1 bound to SIRT2 and promoted its ubiquitination and degradation. SIRT2 overexpression abrogated the protection of SYVN1 on ER stress and EMT in vitro.</p><p><strong>Conclusions: </strong>These data suggest that SYVN1 suppresses ER stress through the ubiquitination and degradation of SIRT2 to block EMT process, thereby protecting against airway remodeling in asthma.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693155/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of SYVN1 in the control of airway remodeling in asthma protection by promoting SIRT2 ubiquitination and degradation.\",\"authors\":\"Bing Dai, Si Liu, Wenxin Shen, Li Chen, Qianlan Zhou, Lina Han, Qinzhen Zhang, Lishen Shan\",\"doi\":\"10.1186/s40659-023-00478-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Asthma is a heterogenous disease that characterized by airway remodeling. SYVN1 (Synoviolin 1) acts as an E3 ligase to mediate the suppression of endoplasmic reticulum (ER) stress through ubiquitination and degradation. However, the role of SYVN1 in the pathogenesis of asthma is unclear.</p><p><strong>Results: </strong>In the present study, an ovalbumin (OVA)-induced murine model was used to evaluate the effect of SYVN1 on asthma. An increase in SYVN1 expression was observed in the lungs of mice after OVA induction. Overexpression of SYVN1 attenuated airway inflammation, goblet cell hyperplasia and collagen deposition induced by OVA. The increased ER stress-related proteins and altered epithelial-mesenchymal transition (EMT) markers were also inhibited by SYVN1 in vivo. Next, TGF-β1-induced bronchial epithelial cells (BEAS-2B) were used to induce EMT process in vitro. Results showed that TGF-β1 stimulation downregulated the expression of SYVN1, and SYVN1 overexpression prevented ER stress response and EMT process in TGF-β1-induced cells. In addition, we identified that SYVN1 bound to SIRT2 and promoted its ubiquitination and degradation. SIRT2 overexpression abrogated the protection of SYVN1 on ER stress and EMT in vitro.</p><p><strong>Conclusions: </strong>These data suggest that SYVN1 suppresses ER stress through the ubiquitination and degradation of SIRT2 to block EMT process, thereby protecting against airway remodeling in asthma.</p>\",\"PeriodicalId\":9084,\"journal\":{\"name\":\"Biological Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40659-023-00478-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-023-00478-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Role of SYVN1 in the control of airway remodeling in asthma protection by promoting SIRT2 ubiquitination and degradation.
Background: Asthma is a heterogenous disease that characterized by airway remodeling. SYVN1 (Synoviolin 1) acts as an E3 ligase to mediate the suppression of endoplasmic reticulum (ER) stress through ubiquitination and degradation. However, the role of SYVN1 in the pathogenesis of asthma is unclear.
Results: In the present study, an ovalbumin (OVA)-induced murine model was used to evaluate the effect of SYVN1 on asthma. An increase in SYVN1 expression was observed in the lungs of mice after OVA induction. Overexpression of SYVN1 attenuated airway inflammation, goblet cell hyperplasia and collagen deposition induced by OVA. The increased ER stress-related proteins and altered epithelial-mesenchymal transition (EMT) markers were also inhibited by SYVN1 in vivo. Next, TGF-β1-induced bronchial epithelial cells (BEAS-2B) were used to induce EMT process in vitro. Results showed that TGF-β1 stimulation downregulated the expression of SYVN1, and SYVN1 overexpression prevented ER stress response and EMT process in TGF-β1-induced cells. In addition, we identified that SYVN1 bound to SIRT2 and promoted its ubiquitination and degradation. SIRT2 overexpression abrogated the protection of SYVN1 on ER stress and EMT in vitro.
Conclusions: These data suggest that SYVN1 suppresses ER stress through the ubiquitination and degradation of SIRT2 to block EMT process, thereby protecting against airway remodeling in asthma.
期刊介绍:
Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.