相互依赖的基础设施系统的灾后恢复规划:平衡社会和经济影响的框架

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Xiubing Huang, Naiyu Wang
{"title":"相互依赖的基础设施系统的灾后恢复规划:平衡社会和经济影响的框架","authors":"Xiubing Huang,&nbsp;Naiyu Wang","doi":"10.1016/j.strusafe.2023.102408","DOIUrl":null,"url":null,"abstract":"<div><p>Hazard-induced service interruption of interdependent infrastructure systems (IISs) (e.g., electricity, water, gas, etc.) can lead to significant disruptions of social and economic functions of a modern society. An effective post-event restoration of the IISs is therefore of paramount importance to the overall recovery of a hazard-stricken community as a whole. As opposed to approaches with pure engineering perspectives, this study proposes an IISs restoration planning methodology aimed at balancing tradeoffs between the loss of social services (e.g., health care, food supply, etc.) and that of economic productions (e.g., construction, manufacturing, trade, etc.) throughout the IISs restoration process. The methodology is distinguished from previous researches with the following contributions: i) quantitatively relates the losses of various social services and economic productions to the service disruptions of IISs through the functionality loss of buildings; ii) the IISs disruption-induced overall losses of social services and economic productions accumulated throughout the whole recovery process is set as the bi-objective in formulating IISs restoration plans, and the Pareto optimal solutions are given to satisfy different decision preferences; iii) physics-based models capturing operational mechanisms of the IISs are embedded to provide realistic estimations of commodity supplies at each time step of the restoration optimization. The optimization is coupled with Monte Carlo simulation to uncover the impact of decision preference on community recovery from a statistical point of view. Testbed illustration shows that the decision preference makes significant impact on the recovery of the community as a whole and of different areas in the community with different socioeconomic characteristics.</p></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"107 ","pages":"Article 102408"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-disaster restoration planning of interdependent infrastructure Systems: A framework to balance social and economic impacts\",\"authors\":\"Xiubing Huang,&nbsp;Naiyu Wang\",\"doi\":\"10.1016/j.strusafe.2023.102408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hazard-induced service interruption of interdependent infrastructure systems (IISs) (e.g., electricity, water, gas, etc.) can lead to significant disruptions of social and economic functions of a modern society. An effective post-event restoration of the IISs is therefore of paramount importance to the overall recovery of a hazard-stricken community as a whole. As opposed to approaches with pure engineering perspectives, this study proposes an IISs restoration planning methodology aimed at balancing tradeoffs between the loss of social services (e.g., health care, food supply, etc.) and that of economic productions (e.g., construction, manufacturing, trade, etc.) throughout the IISs restoration process. The methodology is distinguished from previous researches with the following contributions: i) quantitatively relates the losses of various social services and economic productions to the service disruptions of IISs through the functionality loss of buildings; ii) the IISs disruption-induced overall losses of social services and economic productions accumulated throughout the whole recovery process is set as the bi-objective in formulating IISs restoration plans, and the Pareto optimal solutions are given to satisfy different decision preferences; iii) physics-based models capturing operational mechanisms of the IISs are embedded to provide realistic estimations of commodity supplies at each time step of the restoration optimization. The optimization is coupled with Monte Carlo simulation to uncover the impact of decision preference on community recovery from a statistical point of view. Testbed illustration shows that the decision preference makes significant impact on the recovery of the community as a whole and of different areas in the community with different socioeconomic characteristics.</p></div>\",\"PeriodicalId\":21978,\"journal\":{\"name\":\"Structural Safety\",\"volume\":\"107 \",\"pages\":\"Article 102408\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167473023000954\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473023000954","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

相互依赖的基础设施系统(如电、水、气等)因灾害导致的服务中断可能导致现代社会社会和经济功能的重大中断。因此,有效的灾后重建对于受灾社区的整体恢复至关重要。与纯工程角度的方法相反,本研究提出了一种IISs恢复规划方法,旨在平衡整个IISs恢复过程中社会服务(如医疗保健、食品供应等)损失与经济生产(如建筑、制造业、贸易等)损失之间的权衡。该方法不同于以往的研究,其贡献如下:i)定量地将各种社会服务和经济产品的损失与通过建筑物功能丧失而造成的IISs服务中断联系起来;(2)将IISs中断导致的整个恢复过程中累积的社会服务和经济生产的总损失作为制定IISs恢复计划的双目标,并给出了满足不同决策偏好的Pareto最优解;iii)嵌入捕捉IISs运行机制的基于物理的模型,以在恢复优化的每个时间步骤中提供对商品供应的现实估计。从统计的角度出发,结合蒙特卡罗模拟,揭示了决策偏好对社区恢复的影响。实验表明,决策偏好对社区整体和不同社会经济特征的社区不同区域的恢复有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Post-disaster restoration planning of interdependent infrastructure Systems: A framework to balance social and economic impacts

Hazard-induced service interruption of interdependent infrastructure systems (IISs) (e.g., electricity, water, gas, etc.) can lead to significant disruptions of social and economic functions of a modern society. An effective post-event restoration of the IISs is therefore of paramount importance to the overall recovery of a hazard-stricken community as a whole. As opposed to approaches with pure engineering perspectives, this study proposes an IISs restoration planning methodology aimed at balancing tradeoffs between the loss of social services (e.g., health care, food supply, etc.) and that of economic productions (e.g., construction, manufacturing, trade, etc.) throughout the IISs restoration process. The methodology is distinguished from previous researches with the following contributions: i) quantitatively relates the losses of various social services and economic productions to the service disruptions of IISs through the functionality loss of buildings; ii) the IISs disruption-induced overall losses of social services and economic productions accumulated throughout the whole recovery process is set as the bi-objective in formulating IISs restoration plans, and the Pareto optimal solutions are given to satisfy different decision preferences; iii) physics-based models capturing operational mechanisms of the IISs are embedded to provide realistic estimations of commodity supplies at each time step of the restoration optimization. The optimization is coupled with Monte Carlo simulation to uncover the impact of decision preference on community recovery from a statistical point of view. Testbed illustration shows that the decision preference makes significant impact on the recovery of the community as a whole and of different areas in the community with different socioeconomic characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信