Yunhua Loo , Anita Sook Yee Chan , Chiea Chuen Khor , Tin Aung , Zhenxun Wang
{"title":"鼠类青光眼基因改造模型","authors":"Yunhua Loo , Anita Sook Yee Chan , Chiea Chuen Khor , Tin Aung , Zhenxun Wang","doi":"10.1016/j.mam.2023.101229","DOIUrl":null,"url":null,"abstract":"<div><p><span>Glaucoma, one of the leading causes of irreversible blindness worldwide, is a complex and heterogenous disease. While environmental factors are important, it is well-recognized that the disease has a strong heritable component. With the advent of large-cohort genome wide association studies, a myriad of genetic risk loci has been linked to different forms of glaucoma. </span>Animal models have been an indispensable tool in characterizing these loci, especially if they lie within coding regions in the genome. Not only do these models connect genotype to phenotype, advancing our understanding of glaucoma pathogenesis in the process, they also have valuable utility as a platform for the pre-clinical testing of potential therapies. In this review, we will outline genetic models used for studying the major forms of glaucoma, including primary open angle glaucoma, normal tension glaucoma, primary angle closure glaucoma, pigmentary glaucoma, pseudoexfoliation glaucoma, and early onset glaucoma, including congenital and developmental glaucoma, and how studying these models have helped shed light on human glaucoma.</p></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rodent genetically modified models of glaucoma\",\"authors\":\"Yunhua Loo , Anita Sook Yee Chan , Chiea Chuen Khor , Tin Aung , Zhenxun Wang\",\"doi\":\"10.1016/j.mam.2023.101229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Glaucoma, one of the leading causes of irreversible blindness worldwide, is a complex and heterogenous disease. While environmental factors are important, it is well-recognized that the disease has a strong heritable component. With the advent of large-cohort genome wide association studies, a myriad of genetic risk loci has been linked to different forms of glaucoma. </span>Animal models have been an indispensable tool in characterizing these loci, especially if they lie within coding regions in the genome. Not only do these models connect genotype to phenotype, advancing our understanding of glaucoma pathogenesis in the process, they also have valuable utility as a platform for the pre-clinical testing of potential therapies. In this review, we will outline genetic models used for studying the major forms of glaucoma, including primary open angle glaucoma, normal tension glaucoma, primary angle closure glaucoma, pigmentary glaucoma, pseudoexfoliation glaucoma, and early onset glaucoma, including congenital and developmental glaucoma, and how studying these models have helped shed light on human glaucoma.</p></div>\",\"PeriodicalId\":49798,\"journal\":{\"name\":\"Molecular Aspects of Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Aspects of Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098299723000699\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Aspects of Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098299723000699","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Glaucoma, one of the leading causes of irreversible blindness worldwide, is a complex and heterogenous disease. While environmental factors are important, it is well-recognized that the disease has a strong heritable component. With the advent of large-cohort genome wide association studies, a myriad of genetic risk loci has been linked to different forms of glaucoma. Animal models have been an indispensable tool in characterizing these loci, especially if they lie within coding regions in the genome. Not only do these models connect genotype to phenotype, advancing our understanding of glaucoma pathogenesis in the process, they also have valuable utility as a platform for the pre-clinical testing of potential therapies. In this review, we will outline genetic models used for studying the major forms of glaucoma, including primary open angle glaucoma, normal tension glaucoma, primary angle closure glaucoma, pigmentary glaucoma, pseudoexfoliation glaucoma, and early onset glaucoma, including congenital and developmental glaucoma, and how studying these models have helped shed light on human glaucoma.
期刊介绍:
Molecular Aspects of Medicine is a review journal that serves as an official publication of the International Union of Biochemistry and Molecular Biology. It caters to physicians and biomedical scientists and aims to bridge the gap between these two fields. The journal encourages practicing clinical scientists to contribute by providing extended reviews on the molecular aspects of a specific medical field. These articles are written in a way that appeals to both doctors who may struggle with basic science and basic scientists who may have limited awareness of clinical practice issues. The journal covers a wide range of medical topics to showcase the molecular insights gained from basic science and highlight the challenging problems that medicine presents to the scientific community.