波罗斯-摩尔数的Laguerre-Pólya类产生的属性

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jungle Z.X. Jiang , Larry X.W. Wang
{"title":"波罗斯-摩尔数的Laguerre-Pólya类产生的属性","authors":"Jungle Z.X. Jiang ,&nbsp;Larry X.W. Wang","doi":"10.1016/j.aam.2023.102637","DOIUrl":null,"url":null,"abstract":"<div><p>The Boros-Moll numbers <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo></math></span> arise from a quartic integral studied by Boros and Moll. For fixed <em>m</em>, the sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo><mo>}</mo></mrow><mrow><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi></mrow></msub></math></span><span> has been proven to satisfy the Turán inequality, the higher order Turán inequality and 3-log-concavity which are originated from the Laguerre-Pólya class. In this paper, we give sharper bounds for both </span><span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo><mo>)</mo></math></span>. Applying these bounds, we prove a series of results on the log-behavior, the higher order Turán inequality and the Laguerre inequalities of <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo></math></span> for fixed <em>i</em><span>. In our proofs, we use Mathematica as an auxiliary tool to prove inequalities involving several variables. Moreover, we propose a series of open problems.</span></p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties arising from Laguerre-Pólya class for the Boros-Moll numbers\",\"authors\":\"Jungle Z.X. Jiang ,&nbsp;Larry X.W. Wang\",\"doi\":\"10.1016/j.aam.2023.102637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Boros-Moll numbers <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo></math></span> arise from a quartic integral studied by Boros and Moll. For fixed <em>m</em>, the sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo><mo>}</mo></mrow><mrow><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi></mrow></msub></math></span><span> has been proven to satisfy the Turán inequality, the higher order Turán inequality and 3-log-concavity which are originated from the Laguerre-Pólya class. In this paper, we give sharper bounds for both </span><span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo><mo>)</mo></math></span>. Applying these bounds, we prove a series of results on the log-behavior, the higher order Turán inequality and the Laguerre inequalities of <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo></math></span> for fixed <em>i</em><span>. In our proofs, we use Mathematica as an auxiliary tool to prove inequalities involving several variables. Moreover, we propose a series of open problems.</span></p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885823001550\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885823001550","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Boros-Moll数di(m)是由Boros和Moll研究的一个四次积分产生的。对于固定m,证明了序列{di(m)}0≤i≤m满足Turán不等式、高阶Turán不等式和源于Laguerre-Pólya类的3-log-凹性。本文给出了di(m+1)/di(m)和di(m)2/(di - 1(m)di+1(m))的更清晰的界。应用这些界限,我们证明了一系列关于对数行为的结果,高阶Turán不等式和固定i的di(m)的拉盖尔不等式。在我们的证明中,我们使用Mathematica作为辅助工具来证明涉及多个变量的不等式。此外,我们提出了一系列悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties arising from Laguerre-Pólya class for the Boros-Moll numbers

The Boros-Moll numbers di(m) arise from a quartic integral studied by Boros and Moll. For fixed m, the sequence {di(m)}0im has been proven to satisfy the Turán inequality, the higher order Turán inequality and 3-log-concavity which are originated from the Laguerre-Pólya class. In this paper, we give sharper bounds for both di(m+1)/di(m) and di(m)2/(di1(m)di+1(m)). Applying these bounds, we prove a series of results on the log-behavior, the higher order Turán inequality and the Laguerre inequalities of di(m) for fixed i. In our proofs, we use Mathematica as an auxiliary tool to prove inequalities involving several variables. Moreover, we propose a series of open problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信