{"title":"波罗斯-摩尔数的Laguerre-Pólya类产生的属性","authors":"Jungle Z.X. Jiang , Larry X.W. Wang","doi":"10.1016/j.aam.2023.102637","DOIUrl":null,"url":null,"abstract":"<div><p>The Boros-Moll numbers <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo></math></span> arise from a quartic integral studied by Boros and Moll. For fixed <em>m</em>, the sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo><mo>}</mo></mrow><mrow><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi></mrow></msub></math></span><span> has been proven to satisfy the Turán inequality, the higher order Turán inequality and 3-log-concavity which are originated from the Laguerre-Pólya class. In this paper, we give sharper bounds for both </span><span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo><mo>)</mo></math></span>. Applying these bounds, we prove a series of results on the log-behavior, the higher order Turán inequality and the Laguerre inequalities of <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo></math></span> for fixed <em>i</em><span>. In our proofs, we use Mathematica as an auxiliary tool to prove inequalities involving several variables. Moreover, we propose a series of open problems.</span></p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"154 ","pages":"Article 102637"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties arising from Laguerre-Pólya class for the Boros-Moll numbers\",\"authors\":\"Jungle Z.X. Jiang , Larry X.W. Wang\",\"doi\":\"10.1016/j.aam.2023.102637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Boros-Moll numbers <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo></math></span> arise from a quartic integral studied by Boros and Moll. For fixed <em>m</em>, the sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo><mo>}</mo></mrow><mrow><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi></mrow></msub></math></span><span> has been proven to satisfy the Turán inequality, the higher order Turán inequality and 3-log-concavity which are originated from the Laguerre-Pólya class. In this paper, we give sharper bounds for both </span><span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo><mo>)</mo></math></span>. Applying these bounds, we prove a series of results on the log-behavior, the higher order Turán inequality and the Laguerre inequalities of <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>)</mo></math></span> for fixed <em>i</em><span>. In our proofs, we use Mathematica as an auxiliary tool to prove inequalities involving several variables. Moreover, we propose a series of open problems.</span></p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"154 \",\"pages\":\"Article 102637\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885823001550\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885823001550","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Properties arising from Laguerre-Pólya class for the Boros-Moll numbers
The Boros-Moll numbers arise from a quartic integral studied by Boros and Moll. For fixed m, the sequence has been proven to satisfy the Turán inequality, the higher order Turán inequality and 3-log-concavity which are originated from the Laguerre-Pólya class. In this paper, we give sharper bounds for both and . Applying these bounds, we prove a series of results on the log-behavior, the higher order Turán inequality and the Laguerre inequalities of for fixed i. In our proofs, we use Mathematica as an auxiliary tool to prove inequalities involving several variables. Moreover, we propose a series of open problems.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.