{"title":"转录组学和小RNA测序数据的综合分析为芥菜种子的工程农艺重要性状提供了miRNA候选物","authors":"Rubi Jain , Namrata Dhaka , Pinky Yadav , Manoj Kumar Sharma , Md Danish , Shalu Sharma , Sonika Kumari , Ira Vashisht , RK Brojen Singh , Rita Sharma","doi":"10.1016/j.cpb.2023.100306","DOIUrl":null,"url":null,"abstract":"<div><p><em>Brassica juncea</em> L. is an important oilseed crop that yields edible oil and biofuel. Improving <em>B. juncea</em> seed traits is a primary breeding target, but these traits are genetically complex. MicroRNAs (miRNAs) regulate seed development by modulating gene expression at the post-transcriptional or translational level and are excellent candidates for improving seed traits. However, the roles of miRNAs in <em>B. juncea</em> seed development are yet to be investigated. Here, we report small RNA profiling and miRNA identification from developing seeds of two contrasting varieties of <em>B. juncea</em>, Early Heera2 (EH2) and Pusa Jaikisan (PJK). We identified 326 miRNAs, including 127 known and 199 novel miRNAs, of which 103 exhibited inter-varietal differential expression. Integrating miRNAome and our previous transcriptome data identified 13,683 putative miRNA-target modules. Segregation of differentially expressed miRNAs into different groups based on variety-wise upregulation, followed by comprehensive functional analysis of targets using pathway mapping, gene ontology, transcription factor mapping, and candidate gene analysis, revealed at least 11, 6, and 7 miRNAs as robust candidates for the regulation of seed size, seed coat color, and oil content, respectively. Further, co-localization with previously reported quantitative trait loci (QTL) proffered 29 and 15 miRNAs overlapping with seed weight and oil content QTLs, respectively. Our study is the first comprehensive report of miRNAome expression dynamics from developing seeds and provides candidate miRNAs and target genes for engineering seed traits in <em>B. juncea</em>.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221466282300035X/pdfft?md5=beddf7b4bfe5ea7da889429e8429356f&pid=1-s2.0-S221466282300035X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrated analysis of transcriptomic and small RNA sequencing data provides miRNA candidates for engineering agronomically important seed traits in Brassica juncea\",\"authors\":\"Rubi Jain , Namrata Dhaka , Pinky Yadav , Manoj Kumar Sharma , Md Danish , Shalu Sharma , Sonika Kumari , Ira Vashisht , RK Brojen Singh , Rita Sharma\",\"doi\":\"10.1016/j.cpb.2023.100306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Brassica juncea</em> L. is an important oilseed crop that yields edible oil and biofuel. Improving <em>B. juncea</em> seed traits is a primary breeding target, but these traits are genetically complex. MicroRNAs (miRNAs) regulate seed development by modulating gene expression at the post-transcriptional or translational level and are excellent candidates for improving seed traits. However, the roles of miRNAs in <em>B. juncea</em> seed development are yet to be investigated. Here, we report small RNA profiling and miRNA identification from developing seeds of two contrasting varieties of <em>B. juncea</em>, Early Heera2 (EH2) and Pusa Jaikisan (PJK). We identified 326 miRNAs, including 127 known and 199 novel miRNAs, of which 103 exhibited inter-varietal differential expression. Integrating miRNAome and our previous transcriptome data identified 13,683 putative miRNA-target modules. Segregation of differentially expressed miRNAs into different groups based on variety-wise upregulation, followed by comprehensive functional analysis of targets using pathway mapping, gene ontology, transcription factor mapping, and candidate gene analysis, revealed at least 11, 6, and 7 miRNAs as robust candidates for the regulation of seed size, seed coat color, and oil content, respectively. Further, co-localization with previously reported quantitative trait loci (QTL) proffered 29 and 15 miRNAs overlapping with seed weight and oil content QTLs, respectively. Our study is the first comprehensive report of miRNAome expression dynamics from developing seeds and provides candidate miRNAs and target genes for engineering seed traits in <em>B. juncea</em>.</p></div>\",\"PeriodicalId\":38090,\"journal\":{\"name\":\"Current Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221466282300035X/pdfft?md5=beddf7b4bfe5ea7da889429e8429356f&pid=1-s2.0-S221466282300035X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221466282300035X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221466282300035X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Integrated analysis of transcriptomic and small RNA sequencing data provides miRNA candidates for engineering agronomically important seed traits in Brassica juncea
Brassica juncea L. is an important oilseed crop that yields edible oil and biofuel. Improving B. juncea seed traits is a primary breeding target, but these traits are genetically complex. MicroRNAs (miRNAs) regulate seed development by modulating gene expression at the post-transcriptional or translational level and are excellent candidates for improving seed traits. However, the roles of miRNAs in B. juncea seed development are yet to be investigated. Here, we report small RNA profiling and miRNA identification from developing seeds of two contrasting varieties of B. juncea, Early Heera2 (EH2) and Pusa Jaikisan (PJK). We identified 326 miRNAs, including 127 known and 199 novel miRNAs, of which 103 exhibited inter-varietal differential expression. Integrating miRNAome and our previous transcriptome data identified 13,683 putative miRNA-target modules. Segregation of differentially expressed miRNAs into different groups based on variety-wise upregulation, followed by comprehensive functional analysis of targets using pathway mapping, gene ontology, transcription factor mapping, and candidate gene analysis, revealed at least 11, 6, and 7 miRNAs as robust candidates for the regulation of seed size, seed coat color, and oil content, respectively. Further, co-localization with previously reported quantitative trait loci (QTL) proffered 29 and 15 miRNAs overlapping with seed weight and oil content QTLs, respectively. Our study is the first comprehensive report of miRNAome expression dynamics from developing seeds and provides candidate miRNAs and target genes for engineering seed traits in B. juncea.
期刊介绍:
Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.