Mahendra Prajapati, Rohitas Deshmukh, Ranjit K Harwansh
{"title":"苦杏仁苷纳米颗粒递送系统作为潜在的癌症治疗草药生物活性剂的研究进展。","authors":"Mahendra Prajapati, Rohitas Deshmukh, Ranjit K Harwansh","doi":"10.2174/0115672018280381231119150732","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is the deadliest and most serious health problem. The mortality rate of cancer patients has increased significantly worldwide in recent years. There are several treatments available, but these treatments have many limitations, such as non-specific targeting, toxicity, bioavailability, solubility, permeability problems, serious side effects, and a higher dose. Many people prefer phytomedicine because it has fewer side effects. However, amygdalin is a naturally occurring phytoconstituent. It has many harmful effects due to the cyanide group present in the chemical structure. Many scientists and researchers have given their thoughts associated with amygdalin and its toxicities. However, there is a need for a more advanced, effective, and newer delivery system with reduced toxicity effects of amygdalin. Nanotechnology has become a more refined and emerging medical approach, offering innovative research areas to treat cancer. This review focuses on the use of amygdaline as herbal medicine encapsulating into several nanoparticulate delivery systems such as silver nanoparticles, graphene oxide nanoparticles, gold nanoparticles, nanofibers, nanocomposites, niosomes, and magnetic nanoparticles in the treatment of cancer. In addition, this article provides information on amygdalin structure and physical properties, pharmacokinetics, toxicity, and challenges with amygdalin.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"63-79"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Trends in Nanoparticulate Delivery System for Amygdalin as Potential Therapeutic Herbal Bioactive Agent for Cancer Treatment.\",\"authors\":\"Mahendra Prajapati, Rohitas Deshmukh, Ranjit K Harwansh\",\"doi\":\"10.2174/0115672018280381231119150732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer is the deadliest and most serious health problem. The mortality rate of cancer patients has increased significantly worldwide in recent years. There are several treatments available, but these treatments have many limitations, such as non-specific targeting, toxicity, bioavailability, solubility, permeability problems, serious side effects, and a higher dose. Many people prefer phytomedicine because it has fewer side effects. However, amygdalin is a naturally occurring phytoconstituent. It has many harmful effects due to the cyanide group present in the chemical structure. Many scientists and researchers have given their thoughts associated with amygdalin and its toxicities. However, there is a need for a more advanced, effective, and newer delivery system with reduced toxicity effects of amygdalin. Nanotechnology has become a more refined and emerging medical approach, offering innovative research areas to treat cancer. This review focuses on the use of amygdaline as herbal medicine encapsulating into several nanoparticulate delivery systems such as silver nanoparticles, graphene oxide nanoparticles, gold nanoparticles, nanofibers, nanocomposites, niosomes, and magnetic nanoparticles in the treatment of cancer. In addition, this article provides information on amygdalin structure and physical properties, pharmacokinetics, toxicity, and challenges with amygdalin.</p>\",\"PeriodicalId\":94287,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":\" \",\"pages\":\"63-79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672018280381231119150732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018280381231119150732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent Trends in Nanoparticulate Delivery System for Amygdalin as Potential Therapeutic Herbal Bioactive Agent for Cancer Treatment.
Cancer is the deadliest and most serious health problem. The mortality rate of cancer patients has increased significantly worldwide in recent years. There are several treatments available, but these treatments have many limitations, such as non-specific targeting, toxicity, bioavailability, solubility, permeability problems, serious side effects, and a higher dose. Many people prefer phytomedicine because it has fewer side effects. However, amygdalin is a naturally occurring phytoconstituent. It has many harmful effects due to the cyanide group present in the chemical structure. Many scientists and researchers have given their thoughts associated with amygdalin and its toxicities. However, there is a need for a more advanced, effective, and newer delivery system with reduced toxicity effects of amygdalin. Nanotechnology has become a more refined and emerging medical approach, offering innovative research areas to treat cancer. This review focuses on the use of amygdaline as herbal medicine encapsulating into several nanoparticulate delivery systems such as silver nanoparticles, graphene oxide nanoparticles, gold nanoparticles, nanofibers, nanocomposites, niosomes, and magnetic nanoparticles in the treatment of cancer. In addition, this article provides information on amygdalin structure and physical properties, pharmacokinetics, toxicity, and challenges with amygdalin.