基于鲁棒编码器-解码器级联深度学习模型的植物叶片侵染斑分割。

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
David Femi, Manapakkam Anandan Mukunthan
{"title":"基于鲁棒编码器-解码器级联深度学习模型的植物叶片侵染斑分割。","authors":"David Femi, Manapakkam Anandan Mukunthan","doi":"10.1080/0954898X.2023.2286002","DOIUrl":null,"url":null,"abstract":"<p><p>Leaf infection detection and diagnosis at an earlier stage can improve agricultural output and reduce monetary costs. An inaccurate segmentation may degrade the accuracy of disease classification due to some different and complex leaf diseases. Also, the disease's adhesion and dimension can overlap, causing partial under-segmentation. Therefore, a novel robust Deep Encoder-Decoder Cascaded Network (DEDCNet) model is proposed in this manuscript for leaf image segmentation that precisely segments the diseased leaf spots and differentiates similar diseases. This model is comprised of an Infected Spot Recognition Network and an Infected Spot Segmentation Network. Initially, ISRN is designed by integrating cascaded CNN with a Feature Pyramid Pooling layer to identify the infected leaf spot and avoid an impact of background details. After that, the ISSN developed using an encoder-decoder network, which uses a multi-scale dilated convolution kernel to precisely segment the infected leaf spot. Moreover, the resultant leaf segments are provided to the pre-learned CNN models to learn texture features followed by the SVM algorithm to categorize leaf disease classes. The ODEDCNet delivers exceptional performance on both the Betel Leaf Image and PlantVillage datasets. On the Betel Leaf Image dataset, it achieves an accuracy of 94.89%, with high precision (94.35%), recall (94.77%), and F-score (94.56%), while maintaining low under-segmentation (6.2%) and over-segmentation rates (2.8%). It also achieves a remarkable Dice coefficient of 0.9822, all in just 0.10 seconds. On the PlantVillage dataset, the ODEDCNet outperforms other existing models with an accuracy of 96.5%, demonstrating high precision (96.61%), recall (96.5%), and F-score (96.56%). It excels in reducing under-segmentation to just 3.12% and over-segmentation to 2.56%. Furthermore, it achieves a Dice coefficient of 0.9834 in a mere 0.09 seconds. It evident for the greater efficiency on both segmentation and categorization of leaf diseases contrasted with the existing models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-19"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant leaf infected spot segmentation using robust encoder-decoder cascaded deep learning model.\",\"authors\":\"David Femi, Manapakkam Anandan Mukunthan\",\"doi\":\"10.1080/0954898X.2023.2286002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leaf infection detection and diagnosis at an earlier stage can improve agricultural output and reduce monetary costs. An inaccurate segmentation may degrade the accuracy of disease classification due to some different and complex leaf diseases. Also, the disease's adhesion and dimension can overlap, causing partial under-segmentation. Therefore, a novel robust Deep Encoder-Decoder Cascaded Network (DEDCNet) model is proposed in this manuscript for leaf image segmentation that precisely segments the diseased leaf spots and differentiates similar diseases. This model is comprised of an Infected Spot Recognition Network and an Infected Spot Segmentation Network. Initially, ISRN is designed by integrating cascaded CNN with a Feature Pyramid Pooling layer to identify the infected leaf spot and avoid an impact of background details. After that, the ISSN developed using an encoder-decoder network, which uses a multi-scale dilated convolution kernel to precisely segment the infected leaf spot. Moreover, the resultant leaf segments are provided to the pre-learned CNN models to learn texture features followed by the SVM algorithm to categorize leaf disease classes. The ODEDCNet delivers exceptional performance on both the Betel Leaf Image and PlantVillage datasets. On the Betel Leaf Image dataset, it achieves an accuracy of 94.89%, with high precision (94.35%), recall (94.77%), and F-score (94.56%), while maintaining low under-segmentation (6.2%) and over-segmentation rates (2.8%). It also achieves a remarkable Dice coefficient of 0.9822, all in just 0.10 seconds. On the PlantVillage dataset, the ODEDCNet outperforms other existing models with an accuracy of 96.5%, demonstrating high precision (96.61%), recall (96.5%), and F-score (96.56%). It excels in reducing under-segmentation to just 3.12% and over-segmentation to 2.56%. Furthermore, it achieves a Dice coefficient of 0.9834 in a mere 0.09 seconds. It evident for the greater efficiency on both segmentation and categorization of leaf diseases contrasted with the existing models.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-19\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2023.2286002\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2286002","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

叶片侵染的早期检测和诊断可以提高农业产量,降低经济成本。由于一些不同且复杂的叶片病害,不准确的分割可能会降低病害分类的准确性。此外,疾病的粘附和尺寸可能重叠,导致部分分割不足。因此,本文提出了一种新的鲁棒深度编码器-解码器级联网络(DEDCNet)模型用于叶片图像分割,该模型可以精确分割患病的叶片斑点并区分相似的疾病。该模型由侵染点识别网络和侵染点分割网络组成。最初,ISRN通过将级联CNN与特征金字塔池层相结合来识别感染的叶斑病,并避免背景细节的影响。之后,ISSN使用编码器-解码器网络开发,该网络使用多尺度扩展卷积核来精确分割感染的叶斑病。然后将得到的叶段提供给预学习的CNN模型学习纹理特征,再通过SVM算法对叶病类进行分类。ODEDCNet在槟榔叶图像和PlantVillage数据集上提供了卓越的性能。在槟榔叶图像数据集上,达到了94.89%的准确率,具有较高的精度(94.35%)、召回率(94.77%)和f分数(94.56%),同时保持了较低的欠分割率(6.2%)和过分割率(2.8%)。它还在0.10秒内实现了0.9822的骰子系数。在PlantVillage数据集上,ODEDCNet以96.5%的准确率优于其他现有模型,显示出高精度(96.61%)、召回率(96.5%)和f分数(96.56%)。它擅长将分割不足减少到3.12%,过度分割减少到2.56%。此外,它在0.09秒内实现了0.9834的Dice系数。与现有模型相比,该模型在叶片病害的分割和分类上具有更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plant leaf infected spot segmentation using robust encoder-decoder cascaded deep learning model.

Leaf infection detection and diagnosis at an earlier stage can improve agricultural output and reduce monetary costs. An inaccurate segmentation may degrade the accuracy of disease classification due to some different and complex leaf diseases. Also, the disease's adhesion and dimension can overlap, causing partial under-segmentation. Therefore, a novel robust Deep Encoder-Decoder Cascaded Network (DEDCNet) model is proposed in this manuscript for leaf image segmentation that precisely segments the diseased leaf spots and differentiates similar diseases. This model is comprised of an Infected Spot Recognition Network and an Infected Spot Segmentation Network. Initially, ISRN is designed by integrating cascaded CNN with a Feature Pyramid Pooling layer to identify the infected leaf spot and avoid an impact of background details. After that, the ISSN developed using an encoder-decoder network, which uses a multi-scale dilated convolution kernel to precisely segment the infected leaf spot. Moreover, the resultant leaf segments are provided to the pre-learned CNN models to learn texture features followed by the SVM algorithm to categorize leaf disease classes. The ODEDCNet delivers exceptional performance on both the Betel Leaf Image and PlantVillage datasets. On the Betel Leaf Image dataset, it achieves an accuracy of 94.89%, with high precision (94.35%), recall (94.77%), and F-score (94.56%), while maintaining low under-segmentation (6.2%) and over-segmentation rates (2.8%). It also achieves a remarkable Dice coefficient of 0.9822, all in just 0.10 seconds. On the PlantVillage dataset, the ODEDCNet outperforms other existing models with an accuracy of 96.5%, demonstrating high precision (96.61%), recall (96.5%), and F-score (96.56%). It excels in reducing under-segmentation to just 3.12% and over-segmentation to 2.56%. Furthermore, it achieves a Dice coefficient of 0.9834 in a mere 0.09 seconds. It evident for the greater efficiency on both segmentation and categorization of leaf diseases contrasted with the existing models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信