DNA修复的冷快照:DNA- pkcs和NHEJ机制的低温电镜结构。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Himani Amin , Sayma Zahid , Chloe Hall , Amanda K. Chaplin
{"title":"DNA修复的冷快照:DNA- pkcs和NHEJ机制的低温电镜结构。","authors":"Himani Amin ,&nbsp;Sayma Zahid ,&nbsp;Chloe Hall ,&nbsp;Amanda K. Chaplin","doi":"10.1016/j.pbiomolbio.2023.11.007","DOIUrl":null,"url":null,"abstract":"<div><p>The proteins and protein assemblies involved in DNA repair have been the focus of a multitude of structural studies for the past few decades. Historically, the structures of these protein complexes have been resolved by X-ray crystallography. However, more recently with the advancements in cryo-electron microscopy (cryo-EM) ranging from optimising the methodology for sample preparation to the development of improved electron detectors, the focus has shifted from X-ray crystallography to cryo-EM. This methodological transition has allowed for the structural determination of larger, more complex protein assemblies involved in DNA repair pathways and has subsequently led to a deeper understanding of the mechanisms utilised by these fascinating molecular machines. Here, we review some of the key structural advancements that have been gained in the study of non-homologous end joining (NHEJ) by the use of cryo-EM, with a focus on assemblies composed of DNA-PKcs and Ku70/80 (Ku) and the various methodologies utilised to obtain these structures.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079610723001001/pdfft?md5=82993d4cb25614e14dc6c19e75a17d9e&pid=1-s2.0-S0079610723001001-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cold snapshots of DNA repair: Cryo-EM structures of DNA-PKcs and NHEJ machinery\",\"authors\":\"Himani Amin ,&nbsp;Sayma Zahid ,&nbsp;Chloe Hall ,&nbsp;Amanda K. Chaplin\",\"doi\":\"10.1016/j.pbiomolbio.2023.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proteins and protein assemblies involved in DNA repair have been the focus of a multitude of structural studies for the past few decades. Historically, the structures of these protein complexes have been resolved by X-ray crystallography. However, more recently with the advancements in cryo-electron microscopy (cryo-EM) ranging from optimising the methodology for sample preparation to the development of improved electron detectors, the focus has shifted from X-ray crystallography to cryo-EM. This methodological transition has allowed for the structural determination of larger, more complex protein assemblies involved in DNA repair pathways and has subsequently led to a deeper understanding of the mechanisms utilised by these fascinating molecular machines. Here, we review some of the key structural advancements that have been gained in the study of non-homologous end joining (NHEJ) by the use of cryo-EM, with a focus on assemblies composed of DNA-PKcs and Ku70/80 (Ku) and the various methodologies utilised to obtain these structures.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079610723001001/pdfft?md5=82993d4cb25614e14dc6c19e75a17d9e&pid=1-s2.0-S0079610723001001-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079610723001001\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610723001001","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,参与DNA修复的蛋白质和蛋白质组装一直是众多结构研究的焦点。历史上,这些蛋白质复合物的结构已经被x射线晶体学解决了。然而,最近随着冷冻电子显微镜(cryo-EM)的进步,从优化样品制备方法到改进电子探测器的开发,焦点已经从x射线晶体学转移到冷冻电子显微镜。这种方法上的转变使得DNA修复途径中更大、更复杂的蛋白质组装的结构确定成为可能,并随后导致对这些迷人的分子机器所利用的机制有了更深入的了解。在这里,我们回顾了使用冷冻电镜研究非同源末端连接(NHEJ)的一些关键结构进展,重点关注由DNA-PKcs和Ku70/80 (Ku)组成的组装,以及用于获得这些结构的各种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cold snapshots of DNA repair: Cryo-EM structures of DNA-PKcs and NHEJ machinery

The proteins and protein assemblies involved in DNA repair have been the focus of a multitude of structural studies for the past few decades. Historically, the structures of these protein complexes have been resolved by X-ray crystallography. However, more recently with the advancements in cryo-electron microscopy (cryo-EM) ranging from optimising the methodology for sample preparation to the development of improved electron detectors, the focus has shifted from X-ray crystallography to cryo-EM. This methodological transition has allowed for the structural determination of larger, more complex protein assemblies involved in DNA repair pathways and has subsequently led to a deeper understanding of the mechanisms utilised by these fascinating molecular machines. Here, we review some of the key structural advancements that have been gained in the study of non-homologous end joining (NHEJ) by the use of cryo-EM, with a focus on assemblies composed of DNA-PKcs and Ku70/80 (Ku) and the various methodologies utilised to obtain these structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信