{"title":"PPARα激动剂非诺贝特通过增强小鼠脂肪酸氧化来预防术后认知功能障碍。","authors":"Tiantian Liu, Xinlu Chen, Ziqi Wei, Xue Han, Yujia Liu, Zhengliang Ma, Tianjiao Xia, Xiaoping Gu","doi":"10.1515/tnsci-2022-0317","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Due to high rates of incidence and disability, postoperative cognitive dysfunction (POCD) currently receives a lot of clinical attention. Disturbance of fatty acid oxidation is a potential pathophysiological manifestation underlying POCD. Peroxisome proliferator-activated receptor α (PPARα) is a significant transcription factor of fatty acid oxidation that facilitates the transfer of fatty acids into the mitochondria for oxidation. The potential role of PPARα intervention in POCD warrants consideration.</p><p><strong>Objective: </strong>The present study is aimed to investigate whether PPARα agonist fenofibrate (FF) could protect long-term isoflurane anesthesia-induced POCD model and to explore the potential underlying function of fatty acid oxidation in the process.</p><p><strong>Methods: </strong>We established the POCD model via 6 h long-term isoflurane anesthesia <i>in vivo</i> with C57BL/6J mice and <i>in vitro</i> with N2a cells. Cells and mice were pretreated with PPARα agonist FF before anesthesia, after which fatty acid oxidation and cognitive function were assessed. The level of fatty acid oxidation-related proteins was determined using western blotting. The contextual fear conditioning test was utilized to evaluate mice's learning and memory.</p><p><strong>Results: </strong>Our results showed that 6 h long-term isoflurane anesthesia induced contextual memory damage in mice, accompanied by decreases of fatty acid oxidation-related proteins (peroxisome proliferator-activated receptor γ coactivator 1α, carnitine palmitoyltransferase 1A, and PPARα) both in the hippocampus of POCD mice and in N2a cells. In the N2a cell model, pretreatment of PPARα agonist FF led to the upregulation of fatty acid oxidation-related proteins. <i>In vivo</i> results showed that preconditioned FF reached similar effects. More crucially, FF has been shown to reduce cognitive damage in mice after long-term isoflurane anesthesia. Additionally, our data showed that after blocking fatty acid oxidation by Etomoxir, FF failed to protect cognitive function from long-term isoflurane anesthesia.</p><p><strong>Conclusions: </strong>Pretreatment of PPARα agonist FF can protect against long-term isoflurane anesthesia-induced POCD by enhancing fatty acid oxidation.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220317"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656729/pdf/","citationCount":"0","resultStr":"{\"title\":\"PPARα agonist fenofibrate prevents postoperative cognitive dysfunction by enhancing fatty acid oxidation in mice.\",\"authors\":\"Tiantian Liu, Xinlu Chen, Ziqi Wei, Xue Han, Yujia Liu, Zhengliang Ma, Tianjiao Xia, Xiaoping Gu\",\"doi\":\"10.1515/tnsci-2022-0317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Due to high rates of incidence and disability, postoperative cognitive dysfunction (POCD) currently receives a lot of clinical attention. Disturbance of fatty acid oxidation is a potential pathophysiological manifestation underlying POCD. Peroxisome proliferator-activated receptor α (PPARα) is a significant transcription factor of fatty acid oxidation that facilitates the transfer of fatty acids into the mitochondria for oxidation. The potential role of PPARα intervention in POCD warrants consideration.</p><p><strong>Objective: </strong>The present study is aimed to investigate whether PPARα agonist fenofibrate (FF) could protect long-term isoflurane anesthesia-induced POCD model and to explore the potential underlying function of fatty acid oxidation in the process.</p><p><strong>Methods: </strong>We established the POCD model via 6 h long-term isoflurane anesthesia <i>in vivo</i> with C57BL/6J mice and <i>in vitro</i> with N2a cells. Cells and mice were pretreated with PPARα agonist FF before anesthesia, after which fatty acid oxidation and cognitive function were assessed. The level of fatty acid oxidation-related proteins was determined using western blotting. The contextual fear conditioning test was utilized to evaluate mice's learning and memory.</p><p><strong>Results: </strong>Our results showed that 6 h long-term isoflurane anesthesia induced contextual memory damage in mice, accompanied by decreases of fatty acid oxidation-related proteins (peroxisome proliferator-activated receptor γ coactivator 1α, carnitine palmitoyltransferase 1A, and PPARα) both in the hippocampus of POCD mice and in N2a cells. In the N2a cell model, pretreatment of PPARα agonist FF led to the upregulation of fatty acid oxidation-related proteins. <i>In vivo</i> results showed that preconditioned FF reached similar effects. More crucially, FF has been shown to reduce cognitive damage in mice after long-term isoflurane anesthesia. Additionally, our data showed that after blocking fatty acid oxidation by Etomoxir, FF failed to protect cognitive function from long-term isoflurane anesthesia.</p><p><strong>Conclusions: </strong>Pretreatment of PPARα agonist FF can protect against long-term isoflurane anesthesia-induced POCD by enhancing fatty acid oxidation.</p>\",\"PeriodicalId\":23227,\"journal\":{\"name\":\"Translational Neuroscience\",\"volume\":\"14 1\",\"pages\":\"20220317\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656729/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/tnsci-2022-0317\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0317","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
PPARα agonist fenofibrate prevents postoperative cognitive dysfunction by enhancing fatty acid oxidation in mice.
Background: Due to high rates of incidence and disability, postoperative cognitive dysfunction (POCD) currently receives a lot of clinical attention. Disturbance of fatty acid oxidation is a potential pathophysiological manifestation underlying POCD. Peroxisome proliferator-activated receptor α (PPARα) is a significant transcription factor of fatty acid oxidation that facilitates the transfer of fatty acids into the mitochondria for oxidation. The potential role of PPARα intervention in POCD warrants consideration.
Objective: The present study is aimed to investigate whether PPARα agonist fenofibrate (FF) could protect long-term isoflurane anesthesia-induced POCD model and to explore the potential underlying function of fatty acid oxidation in the process.
Methods: We established the POCD model via 6 h long-term isoflurane anesthesia in vivo with C57BL/6J mice and in vitro with N2a cells. Cells and mice were pretreated with PPARα agonist FF before anesthesia, after which fatty acid oxidation and cognitive function were assessed. The level of fatty acid oxidation-related proteins was determined using western blotting. The contextual fear conditioning test was utilized to evaluate mice's learning and memory.
Results: Our results showed that 6 h long-term isoflurane anesthesia induced contextual memory damage in mice, accompanied by decreases of fatty acid oxidation-related proteins (peroxisome proliferator-activated receptor γ coactivator 1α, carnitine palmitoyltransferase 1A, and PPARα) both in the hippocampus of POCD mice and in N2a cells. In the N2a cell model, pretreatment of PPARα agonist FF led to the upregulation of fatty acid oxidation-related proteins. In vivo results showed that preconditioned FF reached similar effects. More crucially, FF has been shown to reduce cognitive damage in mice after long-term isoflurane anesthesia. Additionally, our data showed that after blocking fatty acid oxidation by Etomoxir, FF failed to protect cognitive function from long-term isoflurane anesthesia.
Conclusions: Pretreatment of PPARα agonist FF can protect against long-term isoflurane anesthesia-induced POCD by enhancing fatty acid oxidation.
期刊介绍:
Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.