Felix U. Enemali, Kingsley Afoke Iteire, Raphael E. Uweigho, Ogunberi Blessing, Gbayisomore Tolulope Judah
{"title":"毛茛叶水提物对百草枯诱导的帕金森病样成年Wistar大鼠氧化应激和多巴胺能神经元失能的保护作用。","authors":"Felix U. Enemali, Kingsley Afoke Iteire, Raphael E. Uweigho, Ogunberi Blessing, Gbayisomore Tolulope Judah","doi":"10.1016/j.jchemneu.2023.102365","DOIUrl":null,"url":null,"abstract":"<div><h3>Background of the study</h3><p><span>Phyllanthus amarus has high nutritional value and is beneficial in managing and treating diverse ailments. This study assessed the role of aqueous leaf extract of Phyllanthus amarus on Paraquat (PQ) induced </span>neurotoxicity<span> in the substantia nigra<span> of Wistar rats.</span></span></p></div><div><h3>Materials and methods</h3><p>The role of aqueous leaves extract of Phyllanthus amarus was assessed using an open field test (OFT) for motor activity, oxidative stress<span> biomarkers [Catalase (CAT), and Superoxide Dismutase<span> (SOD)], histological examination (H and E stained) for cytoarchitectural changes and immunohistochemical studies using tyrosine hydroxylase<span> (TH) as a marker for dopaminergic neurons. Forty-two (42) rats were categorized into six groups (n = 7); group 1: control was administered 0.5 ml/kg distilled water, group 2: received 10 mg/kg PQ + 10 mg/kg L-dopa as reference drug, group 3; received 10 mg/kg PQ, while group 4: received 10 mg/kg PQ + 200 mg/kg P. amarus, group 5: received 10 mg/kg PQ + 300 mg/kg P. amarus, and group 6: received 10 mg/kg PQ + 400 mg/kg P. amarus respectively, for 14 days. All administrations were done orally; a significant difference was set at p < 0.05.</span></span></span></p></div><div><h3>Results and discussion</h3><p>The study's open field test (OFT) revealed no motor activity deficit with Paraquat (PQ) exposure. Also, cytoarchitectural distortions were not observed with Paraquat (PQ) only treatment group compared to the control and other groups pretreated with P. amarus and L-dopa. Moreover, the Paraquat (PQ) only treatment group showed oxidative stress by significantly decreasing the antioxidant enzyme (SOD) compared to the control and L-dopa pretreated group. A significant decrease in tyrosine hydroxylase (TH) expressing dopaminergic neurons was also observed in Paraquat (PQ) only treatment. However, P. amarus treatment showed therapeutic properties by significantly increasing tyrosine hydroxylase (TH) expressing dopaminergic neuron levels relative to control.</p></div><div><h3>Conclusion</h3><p>Aqueous leaf extract of Phyllanthus amarus possesses therapeutic properties against Paraquat (PQ) induced changes in the substantia nigra of Wistar rats.</p></div>","PeriodicalId":15324,"journal":{"name":"Journal of chemical neuroanatomy","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aqueous leaf extract of Phyllanthus amarus protects against oxidative stress and misfiring of dopaminergic neurons in Paraquat-induced Parkinson’s disease-like model of adult Wistar rats\",\"authors\":\"Felix U. Enemali, Kingsley Afoke Iteire, Raphael E. Uweigho, Ogunberi Blessing, Gbayisomore Tolulope Judah\",\"doi\":\"10.1016/j.jchemneu.2023.102365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background of the study</h3><p><span>Phyllanthus amarus has high nutritional value and is beneficial in managing and treating diverse ailments. This study assessed the role of aqueous leaf extract of Phyllanthus amarus on Paraquat (PQ) induced </span>neurotoxicity<span> in the substantia nigra<span> of Wistar rats.</span></span></p></div><div><h3>Materials and methods</h3><p>The role of aqueous leaves extract of Phyllanthus amarus was assessed using an open field test (OFT) for motor activity, oxidative stress<span> biomarkers [Catalase (CAT), and Superoxide Dismutase<span> (SOD)], histological examination (H and E stained) for cytoarchitectural changes and immunohistochemical studies using tyrosine hydroxylase<span> (TH) as a marker for dopaminergic neurons. Forty-two (42) rats were categorized into six groups (n = 7); group 1: control was administered 0.5 ml/kg distilled water, group 2: received 10 mg/kg PQ + 10 mg/kg L-dopa as reference drug, group 3; received 10 mg/kg PQ, while group 4: received 10 mg/kg PQ + 200 mg/kg P. amarus, group 5: received 10 mg/kg PQ + 300 mg/kg P. amarus, and group 6: received 10 mg/kg PQ + 400 mg/kg P. amarus respectively, for 14 days. All administrations were done orally; a significant difference was set at p < 0.05.</span></span></span></p></div><div><h3>Results and discussion</h3><p>The study's open field test (OFT) revealed no motor activity deficit with Paraquat (PQ) exposure. Also, cytoarchitectural distortions were not observed with Paraquat (PQ) only treatment group compared to the control and other groups pretreated with P. amarus and L-dopa. Moreover, the Paraquat (PQ) only treatment group showed oxidative stress by significantly decreasing the antioxidant enzyme (SOD) compared to the control and L-dopa pretreated group. A significant decrease in tyrosine hydroxylase (TH) expressing dopaminergic neurons was also observed in Paraquat (PQ) only treatment. However, P. amarus treatment showed therapeutic properties by significantly increasing tyrosine hydroxylase (TH) expressing dopaminergic neuron levels relative to control.</p></div><div><h3>Conclusion</h3><p>Aqueous leaf extract of Phyllanthus amarus possesses therapeutic properties against Paraquat (PQ) induced changes in the substantia nigra of Wistar rats.</p></div>\",\"PeriodicalId\":15324,\"journal\":{\"name\":\"Journal of chemical neuroanatomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chemical neuroanatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891061823001357\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891061823001357","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Aqueous leaf extract of Phyllanthus amarus protects against oxidative stress and misfiring of dopaminergic neurons in Paraquat-induced Parkinson’s disease-like model of adult Wistar rats
Background of the study
Phyllanthus amarus has high nutritional value and is beneficial in managing and treating diverse ailments. This study assessed the role of aqueous leaf extract of Phyllanthus amarus on Paraquat (PQ) induced neurotoxicity in the substantia nigra of Wistar rats.
Materials and methods
The role of aqueous leaves extract of Phyllanthus amarus was assessed using an open field test (OFT) for motor activity, oxidative stress biomarkers [Catalase (CAT), and Superoxide Dismutase (SOD)], histological examination (H and E stained) for cytoarchitectural changes and immunohistochemical studies using tyrosine hydroxylase (TH) as a marker for dopaminergic neurons. Forty-two (42) rats were categorized into six groups (n = 7); group 1: control was administered 0.5 ml/kg distilled water, group 2: received 10 mg/kg PQ + 10 mg/kg L-dopa as reference drug, group 3; received 10 mg/kg PQ, while group 4: received 10 mg/kg PQ + 200 mg/kg P. amarus, group 5: received 10 mg/kg PQ + 300 mg/kg P. amarus, and group 6: received 10 mg/kg PQ + 400 mg/kg P. amarus respectively, for 14 days. All administrations were done orally; a significant difference was set at p < 0.05.
Results and discussion
The study's open field test (OFT) revealed no motor activity deficit with Paraquat (PQ) exposure. Also, cytoarchitectural distortions were not observed with Paraquat (PQ) only treatment group compared to the control and other groups pretreated with P. amarus and L-dopa. Moreover, the Paraquat (PQ) only treatment group showed oxidative stress by significantly decreasing the antioxidant enzyme (SOD) compared to the control and L-dopa pretreated group. A significant decrease in tyrosine hydroxylase (TH) expressing dopaminergic neurons was also observed in Paraquat (PQ) only treatment. However, P. amarus treatment showed therapeutic properties by significantly increasing tyrosine hydroxylase (TH) expressing dopaminergic neuron levels relative to control.
Conclusion
Aqueous leaf extract of Phyllanthus amarus possesses therapeutic properties against Paraquat (PQ) induced changes in the substantia nigra of Wistar rats.
期刊介绍:
The Journal of Chemical Neuroanatomy publishes scientific reports relating the functional and biochemical aspects of the nervous system with its microanatomical organization. The scope of the journal concentrates on reports which combine microanatomical, biochemical, pharmacological and behavioural approaches.
Papers should offer original data correlating the morphology of the nervous system (the brain and spinal cord in particular) with its biochemistry. The Journal of Chemical Neuroanatomy is particularly interested in publishing important studies performed with up-to-date methodology utilizing sensitive chemical microassays, hybridoma technology, immunocytochemistry, in situ hybridization and receptor radioautography, to name a few examples.
The Journal of Chemical Neuroanatomy is the natural vehicle for integrated studies utilizing these approaches. The articles will be selected by the editorial board and invited reviewers on the basis of their excellence and potential contribution to this field of neurosciences. Both in vivo and in vitro integrated studies in chemical neuroanatomy are appropriate subjects of interest to the journal. These studies should relate only to vertebrate species with particular emphasis on the mammalian and primate nervous systems.