利用计算流体动力学、基于生理的毒物动力学和统计模型重建暴露于亚甲基二苯基-4,4'-二异氰酸酯(MDI)气溶胶的过程。

IF 2 4区 医学 Q4 TOXICOLOGY
Inhalation Toxicology Pub Date : 2023-10-01 Epub Date: 2023-12-07 DOI:10.1080/08958378.2023.2285772
Sajjad Mozaffari, Majid Bayatian, Nan-Hung Hsieh, Monireh Khadem, Amir Abbasi Garmaroudi, Khosro Ashrafi, Seyed Jamaleddin Shahtaheri
{"title":"利用计算流体动力学、基于生理的毒物动力学和统计模型重建暴露于亚甲基二苯基-4,4'-二异氰酸酯(MDI)气溶胶的过程。","authors":"Sajjad Mozaffari, Majid Bayatian, Nan-Hung Hsieh, Monireh Khadem, Amir Abbasi Garmaroudi, Khosro Ashrafi, Seyed Jamaleddin Shahtaheri","doi":"10.1080/08958378.2023.2285772","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study employed computational fluid dynamics (CFD), physiologically based toxicokinetics (PBTK), and statistical modeling to reconstruct exposure to methylene diphenyl-4,4'-diisocyanate (MDI) aerosol. By utilizing a validated CFD model, human respiratory deposition of MDI aerosol in different workload conditions was investigated, while a PBTK model was calibrated using experimental rat data. Biomonitoring data and Markov Chain Monte Carlo (MCMC) simulation were utilized for exposure assessment.</p><p><strong>Results: </strong>Deposition fraction of MDI in the respiratory tract at the light, moderate, and heavy activity were 0.038, 0.079, and 0.153, respectively. Converged MCMC results as the posterior means and prior values were obtained for several PBTK model parameters. In our study, we calibrated a rat model to investigate the transport, absorption, and elimination of 4,4'-MDI <i>via</i> inhalation exposure. The calibration process successfully captured experimental data in the lungs, liver, blood, and kidneys, allowing for a reasonable representation of MDI distribution within the rat model. Our calibrated model also represents MDI dynamics in the bloodstream, facilitating the assessment of bioavailability. For human exposure, we validated the model for recent and long-term MDI exposure using data from relevant studies.</p><p><strong>Conclusion: </strong>Our computational models provide reasonable insights into MDI exposure, contributing to informed risk assessment and the development of effective exposure reduction strategies.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of exposure to methylene diphenyl-4,4'-diisocyanate (MDI) aerosol using computational fluid dynamics, physiologically based toxicokinetics and statistical modeling.\",\"authors\":\"Sajjad Mozaffari, Majid Bayatian, Nan-Hung Hsieh, Monireh Khadem, Amir Abbasi Garmaroudi, Khosro Ashrafi, Seyed Jamaleddin Shahtaheri\",\"doi\":\"10.1080/08958378.2023.2285772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study employed computational fluid dynamics (CFD), physiologically based toxicokinetics (PBTK), and statistical modeling to reconstruct exposure to methylene diphenyl-4,4'-diisocyanate (MDI) aerosol. By utilizing a validated CFD model, human respiratory deposition of MDI aerosol in different workload conditions was investigated, while a PBTK model was calibrated using experimental rat data. Biomonitoring data and Markov Chain Monte Carlo (MCMC) simulation were utilized for exposure assessment.</p><p><strong>Results: </strong>Deposition fraction of MDI in the respiratory tract at the light, moderate, and heavy activity were 0.038, 0.079, and 0.153, respectively. Converged MCMC results as the posterior means and prior values were obtained for several PBTK model parameters. In our study, we calibrated a rat model to investigate the transport, absorption, and elimination of 4,4'-MDI <i>via</i> inhalation exposure. The calibration process successfully captured experimental data in the lungs, liver, blood, and kidneys, allowing for a reasonable representation of MDI distribution within the rat model. Our calibrated model also represents MDI dynamics in the bloodstream, facilitating the assessment of bioavailability. For human exposure, we validated the model for recent and long-term MDI exposure using data from relevant studies.</p><p><strong>Conclusion: </strong>Our computational models provide reasonable insights into MDI exposure, contributing to informed risk assessment and the development of effective exposure reduction strategies.</p>\",\"PeriodicalId\":13561,\"journal\":{\"name\":\"Inhalation Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inhalation Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08958378.2023.2285772\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2023.2285772","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究采用计算流体动力学(CFD)、基于生理的毒物动力学(PBTK)和统计模型来重建对亚甲基二苯基4,4'-二异氰酸酯(MDI)气溶胶的暴露。利用已验证的CFD模型,研究了不同工作负荷条件下人体呼吸道MDI气溶胶的沉积,并利用实验大鼠数据对PBTK模型进行了校准。利用生物监测数据和马尔可夫链蒙特卡罗(MCMC)模拟进行暴露评估。结果:轻度、中度、重度运动时呼吸道内MDI沉积分数分别为0.038、0.079、0.153。得到了PBTK模型参数的后验均值和先验值为收敛的MCMC结果。在我们的研究中,我们校准了一个大鼠模型来研究4,4'-MDI通过吸入暴露的运输、吸收和消除。校准过程成功地捕获了肺、肝脏、血液和肾脏中的实验数据,从而可以合理地表示大鼠模型中的MDI分布。我们的校准模型也代表了血液中的MDI动态,促进了生物利用度的评估。对于人类暴露,我们使用相关研究的数据验证了近期和长期MDI暴露模型。结论:我们的计算模型为MDI暴露提供了合理的见解,有助于知情的风险评估和制定有效的暴露减少策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of exposure to methylene diphenyl-4,4'-diisocyanate (MDI) aerosol using computational fluid dynamics, physiologically based toxicokinetics and statistical modeling.

Objectives: This study employed computational fluid dynamics (CFD), physiologically based toxicokinetics (PBTK), and statistical modeling to reconstruct exposure to methylene diphenyl-4,4'-diisocyanate (MDI) aerosol. By utilizing a validated CFD model, human respiratory deposition of MDI aerosol in different workload conditions was investigated, while a PBTK model was calibrated using experimental rat data. Biomonitoring data and Markov Chain Monte Carlo (MCMC) simulation were utilized for exposure assessment.

Results: Deposition fraction of MDI in the respiratory tract at the light, moderate, and heavy activity were 0.038, 0.079, and 0.153, respectively. Converged MCMC results as the posterior means and prior values were obtained for several PBTK model parameters. In our study, we calibrated a rat model to investigate the transport, absorption, and elimination of 4,4'-MDI via inhalation exposure. The calibration process successfully captured experimental data in the lungs, liver, blood, and kidneys, allowing for a reasonable representation of MDI distribution within the rat model. Our calibrated model also represents MDI dynamics in the bloodstream, facilitating the assessment of bioavailability. For human exposure, we validated the model for recent and long-term MDI exposure using data from relevant studies.

Conclusion: Our computational models provide reasonable insights into MDI exposure, contributing to informed risk assessment and the development of effective exposure reduction strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inhalation Toxicology
Inhalation Toxicology 医学-毒理学
CiteScore
4.10
自引率
4.80%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals. The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信