姜黄碳点对四氯化碳致小鼠肝纤维化的抑制作用。

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yusheng Zhao, Hui Kong, Yuru Li, Yafang Zhao, Yue Zhang, Yan Zhao, Huihua Qu
{"title":"姜黄碳点对四氯化碳致小鼠肝纤维化的抑制作用。","authors":"Yusheng Zhao, Hui Kong, Yuru Li, Yafang Zhao, Yue Zhang, Yan Zhao, Huihua Qu","doi":"10.1080/21691401.2023.2239522","DOIUrl":null,"url":null,"abstract":"<p><p>As a processed product of traditional Chinese medicine <i>Curcumae Radix</i>, <i>Curcumae Radix Carbonisata</i> (CRC) has been widely used in the treatment of liver diseases in ancient medical books. In this study, novel carbon dots (CDs) extending from 1.0 to 4.5 nm were separated from fluid extricates of CRC. Meanwhile, a liver fibrosis model induced by carbon tetrachloride (CCl<sub>4</sub>) was utilized to determine the inhibitory effects of CRC-CDs against liver fibrosis. The results exhibited the CRC-CDs with a quantum yield of 1.34% have a significant inhibitory effect on CCl<sub>4</sub>-induced liver fibrosis, as demonstrated by improving hepatocyte degeneration and necrosis, inflammatory cell infiltration and fibrotic tissue hyperplasia, downregulating the levels of alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), total bile acid (TBA), triglyceride (TG), tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β in the serum, upregulating the contents of superoxide dismutase (SOD), reduced glutathione (GSH), and downregulating the concentration of malondialdehyde (MDA), which lays an important foundation for the development of CRC-CDs as a novel drug for the treatment of liver fibrosis, and provide a certain experimental basis for the clinical application of CRC-CDs in the future.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"23-34"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibitory effects of <i>Curcumae Radix carbonisata</i>-based carbon dots against liver fibrosis induced by carbon tetrachloride in mice.\",\"authors\":\"Yusheng Zhao, Hui Kong, Yuru Li, Yafang Zhao, Yue Zhang, Yan Zhao, Huihua Qu\",\"doi\":\"10.1080/21691401.2023.2239522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a processed product of traditional Chinese medicine <i>Curcumae Radix</i>, <i>Curcumae Radix Carbonisata</i> (CRC) has been widely used in the treatment of liver diseases in ancient medical books. In this study, novel carbon dots (CDs) extending from 1.0 to 4.5 nm were separated from fluid extricates of CRC. Meanwhile, a liver fibrosis model induced by carbon tetrachloride (CCl<sub>4</sub>) was utilized to determine the inhibitory effects of CRC-CDs against liver fibrosis. The results exhibited the CRC-CDs with a quantum yield of 1.34% have a significant inhibitory effect on CCl<sub>4</sub>-induced liver fibrosis, as demonstrated by improving hepatocyte degeneration and necrosis, inflammatory cell infiltration and fibrotic tissue hyperplasia, downregulating the levels of alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), total bile acid (TBA), triglyceride (TG), tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β in the serum, upregulating the contents of superoxide dismutase (SOD), reduced glutathione (GSH), and downregulating the concentration of malondialdehyde (MDA), which lays an important foundation for the development of CRC-CDs as a novel drug for the treatment of liver fibrosis, and provide a certain experimental basis for the clinical application of CRC-CDs in the future.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"52 1\",\"pages\":\"23-34\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2023.2239522\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2023.2239522","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

姜黄(Curcumae carbonate, CRC)是中药姜黄的加工产品,在古代医书中被广泛用于治疗肝脏疾病。本研究从结直肠癌的液体萃取物中分离出了直径在1.0 ~ 4.5 nm之间的新型碳点(CDs)。同时,采用四氯化碳(CCl4)诱导肝纤维化模型,检测CRC-CDs对肝纤维化的抑制作用。结果表明,量子产率为1.34%的CRC-CDs对ccl4诱导的肝纤维化具有显著的抑制作用,表现为改善肝细胞变性和坏死、炎症细胞浸润和纤维化组织增生,下调丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、总胆红素(TBIL)、直接胆红素(DBIL)、总胆汁酸(TBA)、甘油三酯(TG)、肿瘤坏死因子-α (TNF-α)水平。升高血清中白细胞介素(IL)-6和IL-1β的含量,上调超氧化物歧化酶(SOD)、还原性谷胱甘肽(GSH)的含量,下调丙二醛(MDA)的浓度,为CRC-CDs作为治疗肝纤维化的新型药物的开发奠定了重要基础,并为今后CRC-CDs的临床应用提供了一定的实验依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhibitory effects of Curcumae Radix carbonisata-based carbon dots against liver fibrosis induced by carbon tetrachloride in mice.

As a processed product of traditional Chinese medicine Curcumae Radix, Curcumae Radix Carbonisata (CRC) has been widely used in the treatment of liver diseases in ancient medical books. In this study, novel carbon dots (CDs) extending from 1.0 to 4.5 nm were separated from fluid extricates of CRC. Meanwhile, a liver fibrosis model induced by carbon tetrachloride (CCl4) was utilized to determine the inhibitory effects of CRC-CDs against liver fibrosis. The results exhibited the CRC-CDs with a quantum yield of 1.34% have a significant inhibitory effect on CCl4-induced liver fibrosis, as demonstrated by improving hepatocyte degeneration and necrosis, inflammatory cell infiltration and fibrotic tissue hyperplasia, downregulating the levels of alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), total bile acid (TBA), triglyceride (TG), tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β in the serum, upregulating the contents of superoxide dismutase (SOD), reduced glutathione (GSH), and downregulating the concentration of malondialdehyde (MDA), which lays an important foundation for the development of CRC-CDs as a novel drug for the treatment of liver fibrosis, and provide a certain experimental basis for the clinical application of CRC-CDs in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信