对于具有平面覆盖图的偏置集,维度是高度的多项式

IF 1.2 1区 数学 Q1 MATHEMATICS
Jakub Kozik , Piotr Micek , William T. Trotter
{"title":"对于具有平面覆盖图的偏置集,维度是高度的多项式","authors":"Jakub Kozik ,&nbsp;Piotr Micek ,&nbsp;William T. Trotter","doi":"10.1016/j.jctb.2023.10.009","DOIUrl":null,"url":null,"abstract":"<div><p>We show that height <em>h</em><span> posets that have planar cover graphs have dimension </span><span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></math></span>. Previously, the best upper bound was <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></msup></math></span><span>. Planarity plays a key role in our arguments, since there are posets such that (1) dimension is exponential in height and (2) the cover graph excludes </span><span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> as a minor.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"165 ","pages":"Pages 164-196"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Dimension is polynomial in height for posets with planar cover graphs\",\"authors\":\"Jakub Kozik ,&nbsp;Piotr Micek ,&nbsp;William T. Trotter\",\"doi\":\"10.1016/j.jctb.2023.10.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that height <em>h</em><span> posets that have planar cover graphs have dimension </span><span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></math></span>. Previously, the best upper bound was <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></msup></math></span><span>. Planarity plays a key role in our arguments, since there are posets such that (1) dimension is exponential in height and (2) the cover graph excludes </span><span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> as a minor.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"165 \",\"pages\":\"Pages 164-196\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000916\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000916","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们证明了具有平面覆盖图的高度为h的偏置集的维数为O(h6)。以前,最佳上界为2O(h3)。平面性在我们的论证中起着关键作用,因为存在这样的假设集(1)维度在高度上是指数级的,(2)封面图不包括K5作为次要项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimension is polynomial in height for posets with planar cover graphs

We show that height h posets that have planar cover graphs have dimension O(h6). Previously, the best upper bound was 2O(h3). Planarity plays a key role in our arguments, since there are posets such that (1) dimension is exponential in height and (2) the cover graph excludes K5 as a minor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信