Mohammad Dehghany , Reza Naghdabadi , Saeed Sohrabpour , Yunlong Li , Yuhang Hu
{"title":"轴突中渗透驱动的串珠不稳定性:连续统理论、微扰分析和有限元实现","authors":"Mohammad Dehghany , Reza Naghdabadi , Saeed Sohrabpour , Yunlong Li , Yuhang Hu","doi":"10.1016/j.ijengsci.2023.103971","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Axonal beading or formation of multiple beads along an axon is characteristic of many brain pathological states like Alzheimer's, Parkinson's and traumatic injuries. Despite the many existing experimental studies, the underlying mechanisms of this shape instability remain still poorly understood. In this paper, we establish a combined theoretical and numerical framework to study the governing key factors of this morphological transformation. We develop a three-dimensional (3D) non-equilibrium </span>large deformation<span> thermodynamic model<span><span> with two main parts: the central axoplasm which is considered as a polyelectrolyte hydrogel and the encapsulating cortical membrane which is modeled as an incompressible hyperelastic layer with surface energy and growing surface. The model constitutive and evolution equations are then extracted employing thermodynamic balance principles for both bulk and surface material points. It is shown that the second law of thermodynamics indicates that the axolemma growth rate is proportional to the </span>membrane tension<span> which is in perfect agreement with the available experimental findings. While the developed model is general and can be extended to cover other types of axonal beadings, for the sake of simplicity, here, we focus on osmotically driven axisymmetric beadings which are compressible viscoelastic periodic modulations. We solve the corresponding governing equations using the linear perturbation method. This </span></span></span></span>perturbation analysis<span> proves that: 1) the beading instability is a rate dependent phenomenon that is controlled by the axolemma growth, 2) the initially dominant beading waves (the fastest waves) might be replaced only by longer waves which are more stable and 3) the wavelength of the fastest beads should vary roughly linearly with the axonal radius. These main findings are all in good agreement with the existing experimental results. Finally, the finite element implementation of the model is also presented to verify the results of the linear stability analysis<span> for slow waves. The obtained axisymmetric finite element results are in good agreement with the corresponding theoretical findings.</span></span></p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osmotically driven beading instability in axons: Continuum theory, perturbation analysis and finite element implementation\",\"authors\":\"Mohammad Dehghany , Reza Naghdabadi , Saeed Sohrabpour , Yunlong Li , Yuhang Hu\",\"doi\":\"10.1016/j.ijengsci.2023.103971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Axonal beading or formation of multiple beads along an axon is characteristic of many brain pathological states like Alzheimer's, Parkinson's and traumatic injuries. Despite the many existing experimental studies, the underlying mechanisms of this shape instability remain still poorly understood. In this paper, we establish a combined theoretical and numerical framework to study the governing key factors of this morphological transformation. We develop a three-dimensional (3D) non-equilibrium </span>large deformation<span> thermodynamic model<span><span> with two main parts: the central axoplasm which is considered as a polyelectrolyte hydrogel and the encapsulating cortical membrane which is modeled as an incompressible hyperelastic layer with surface energy and growing surface. The model constitutive and evolution equations are then extracted employing thermodynamic balance principles for both bulk and surface material points. It is shown that the second law of thermodynamics indicates that the axolemma growth rate is proportional to the </span>membrane tension<span> which is in perfect agreement with the available experimental findings. While the developed model is general and can be extended to cover other types of axonal beadings, for the sake of simplicity, here, we focus on osmotically driven axisymmetric beadings which are compressible viscoelastic periodic modulations. We solve the corresponding governing equations using the linear perturbation method. This </span></span></span></span>perturbation analysis<span> proves that: 1) the beading instability is a rate dependent phenomenon that is controlled by the axolemma growth, 2) the initially dominant beading waves (the fastest waves) might be replaced only by longer waves which are more stable and 3) the wavelength of the fastest beads should vary roughly linearly with the axonal radius. These main findings are all in good agreement with the existing experimental results. Finally, the finite element implementation of the model is also presented to verify the results of the linear stability analysis<span> for slow waves. The obtained axisymmetric finite element results are in good agreement with the corresponding theoretical findings.</span></span></p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722523001623\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722523001623","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Osmotically driven beading instability in axons: Continuum theory, perturbation analysis and finite element implementation
Axonal beading or formation of multiple beads along an axon is characteristic of many brain pathological states like Alzheimer's, Parkinson's and traumatic injuries. Despite the many existing experimental studies, the underlying mechanisms of this shape instability remain still poorly understood. In this paper, we establish a combined theoretical and numerical framework to study the governing key factors of this morphological transformation. We develop a three-dimensional (3D) non-equilibrium large deformation thermodynamic model with two main parts: the central axoplasm which is considered as a polyelectrolyte hydrogel and the encapsulating cortical membrane which is modeled as an incompressible hyperelastic layer with surface energy and growing surface. The model constitutive and evolution equations are then extracted employing thermodynamic balance principles for both bulk and surface material points. It is shown that the second law of thermodynamics indicates that the axolemma growth rate is proportional to the membrane tension which is in perfect agreement with the available experimental findings. While the developed model is general and can be extended to cover other types of axonal beadings, for the sake of simplicity, here, we focus on osmotically driven axisymmetric beadings which are compressible viscoelastic periodic modulations. We solve the corresponding governing equations using the linear perturbation method. This perturbation analysis proves that: 1) the beading instability is a rate dependent phenomenon that is controlled by the axolemma growth, 2) the initially dominant beading waves (the fastest waves) might be replaced only by longer waves which are more stable and 3) the wavelength of the fastest beads should vary roughly linearly with the axonal radius. These main findings are all in good agreement with the existing experimental results. Finally, the finite element implementation of the model is also presented to verify the results of the linear stability analysis for slow waves. The obtained axisymmetric finite element results are in good agreement with the corresponding theoretical findings.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.