{"title":"过渡金属硫化物转换:一种有前途的固态电池方法","authors":"Grace Whang*, and , Wolfgang G. Zeier*, ","doi":"10.1021/acsenergylett.3c02246","DOIUrl":null,"url":null,"abstract":"<p >Rechargeable Li-ion batteries play a critical role in the net zero picture spanning across the automotive industry, grid scale storage, and recycling infrastructure. With the rising demand for lithium-ion batteries in both the electric vehicle and stationary storage sector, challenges regarding resource availability and supply chain are expected. To reduce the inevitable growing pains of the changing global energy storage landscape, other alternative battery materials must be considered. For stationary power sources, the weight and volume requirements are less stringent than their electric vehicle counterparts offering the possibility to look at a wider range of battery chemistries and an opportunity to explore beyond Co- and Ni-based intercalation chemistries. In this Perspective, we explore the opportunity space for all solid-state batteries based on transition metal sulfide conversion chemistries for stationary energy storage applications.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"8 12","pages":"5264–5274"},"PeriodicalIF":18.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition Metal Sulfide Conversion: A Promising Approach to Solid-State Batteries\",\"authors\":\"Grace Whang*, and , Wolfgang G. Zeier*, \",\"doi\":\"10.1021/acsenergylett.3c02246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Rechargeable Li-ion batteries play a critical role in the net zero picture spanning across the automotive industry, grid scale storage, and recycling infrastructure. With the rising demand for lithium-ion batteries in both the electric vehicle and stationary storage sector, challenges regarding resource availability and supply chain are expected. To reduce the inevitable growing pains of the changing global energy storage landscape, other alternative battery materials must be considered. For stationary power sources, the weight and volume requirements are less stringent than their electric vehicle counterparts offering the possibility to look at a wider range of battery chemistries and an opportunity to explore beyond Co- and Ni-based intercalation chemistries. In this Perspective, we explore the opportunity space for all solid-state batteries based on transition metal sulfide conversion chemistries for stationary energy storage applications.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"8 12\",\"pages\":\"5264–5274\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.3c02246\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.3c02246","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Transition Metal Sulfide Conversion: A Promising Approach to Solid-State Batteries
Rechargeable Li-ion batteries play a critical role in the net zero picture spanning across the automotive industry, grid scale storage, and recycling infrastructure. With the rising demand for lithium-ion batteries in both the electric vehicle and stationary storage sector, challenges regarding resource availability and supply chain are expected. To reduce the inevitable growing pains of the changing global energy storage landscape, other alternative battery materials must be considered. For stationary power sources, the weight and volume requirements are less stringent than their electric vehicle counterparts offering the possibility to look at a wider range of battery chemistries and an opportunity to explore beyond Co- and Ni-based intercalation chemistries. In this Perspective, we explore the opportunity space for all solid-state batteries based on transition metal sulfide conversion chemistries for stationary energy storage applications.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.