在P5-free图中命中所有最大稳定集

IF 1.2 1区 数学 Q1 MATHEMATICS
Sepehr Hajebi , Yanjia Li , Sophie Spirkl
{"title":"在P5-free图中命中所有最大稳定集","authors":"Sepehr Hajebi ,&nbsp;Yanjia Li ,&nbsp;Sophie Spirkl","doi":"10.1016/j.jctb.2023.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that every <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span><span>-free graph of bounded clique number contains a small hitting set of all its maximum stable sets (where </span><span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> denotes the <em>t</em>-vertex path, and for graphs <span><math><mi>G</mi><mo>,</mo><mi>H</mi></math></span>, we say <em>G</em> is <em>H-free</em><span> if no induced subgraph of </span><em>G</em> is isomorphic to <em>H</em>).</p><p>More generally, let us say a class <span><math><mi>C</mi></math></span> of graphs is <em>η-bounded</em> if there exists a function <span><math><mi>h</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> such that <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>h</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> for every graph <span><math><mi>G</mi><mo>∈</mo><mi>C</mi></math></span>, where <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denotes smallest cardinality of a hitting set of all maximum stable sets in <em>G</em>, and <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the clique number of <em>G</em>. Also, <span><math><mi>C</mi></math></span> is said to be <em>polynomially η-bounded</em> if in addition <em>h</em> can be chosen to be a polynomial.</p><p>We introduce <em>η</em>-boundedness inspired by a question of Alon (asking how large <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> can be for a 3-colourable graph <em>G</em>), and motivated by a number of meaningful similarities to <em>χ</em>-boundedness, namely,</p><ul><li><span>•</span><span><p>given a graph <em>G</em>, we have <span><math><mi>η</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>≤</mo><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for every induced subgraph <em>H</em> of <em>G</em> if and only if <em>G</em> is perfect;</p></span></li><li><span>•</span><span><p>there are graphs <em>G</em> with both <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and the girth of <em>G</em> arbitrarily large; and</p></span></li><li><span>•</span><span><p>if <span><math><mi>C</mi></math></span> is a hereditary class of graphs which is polynomially <em>η</em>-bounded, then <span><math><mi>C</mi></math></span> satisfies the Erdős-Hajnal conjecture.</p></span></li></ul> The second bullet above in particular suggests an analogue of the Gyárfás-Sumner conjecture, that the class of all <em>H</em>-free graphs is <em>η</em>-bounded if (and only if) <em>H</em> is a forest. Like <em>χ</em>-boundedness, the case where <em>H</em> is a star is easy to verify, and we prove two non-trivial extensions of this: <em>H</em>-free graphs are <em>η</em>-bounded if (1) <em>H</em> has a vertex incident with all edges of <em>H</em>, or (2) <em>H</em> can be obtained from a star by subdividing at most one edge, exactly once.<p>Unlike <em>χ</em>-boundedness, the case where <em>H</em> is a path is surprisingly hard. Our main result mentioned at the beginning shows that <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs are <em>η</em>-bounded. The proof is rather involved compared to the classical “Gyárfás path” argument which establishes, for all <em>t</em>, the <em>χ</em>-boundedness of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-free graphs. It remains open whether <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-free graphs are <em>η</em>-bounded for <span><math><mi>t</mi><mo>≥</mo><mn>6</mn></math></span>.</p><p>It also remains open whether <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs are polynomially <em>η</em>-bounded, which, if true, would imply the Erdős-Hajnal conjecture for <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs. But we prove that <em>H</em>-free graphs are polynomially <em>η</em>-bounded if <em>H</em> is a proper induced subgraph of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>. We further generalize the case where <em>H</em> is a 1-regular graph on four vertices, showing that <em>H</em>-free graphs are polynomially <em>η</em>-bounded if <em>H</em> is a forest with no vertex of degree more than one and at most four vertices of degree one.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"165 ","pages":"Pages 142-163"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hitting all maximum stable sets in P5-free graphs\",\"authors\":\"Sepehr Hajebi ,&nbsp;Yanjia Li ,&nbsp;Sophie Spirkl\",\"doi\":\"10.1016/j.jctb.2023.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that every <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span><span>-free graph of bounded clique number contains a small hitting set of all its maximum stable sets (where </span><span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> denotes the <em>t</em>-vertex path, and for graphs <span><math><mi>G</mi><mo>,</mo><mi>H</mi></math></span>, we say <em>G</em> is <em>H-free</em><span> if no induced subgraph of </span><em>G</em> is isomorphic to <em>H</em>).</p><p>More generally, let us say a class <span><math><mi>C</mi></math></span> of graphs is <em>η-bounded</em> if there exists a function <span><math><mi>h</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> such that <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>h</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> for every graph <span><math><mi>G</mi><mo>∈</mo><mi>C</mi></math></span>, where <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denotes smallest cardinality of a hitting set of all maximum stable sets in <em>G</em>, and <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the clique number of <em>G</em>. Also, <span><math><mi>C</mi></math></span> is said to be <em>polynomially η-bounded</em> if in addition <em>h</em> can be chosen to be a polynomial.</p><p>We introduce <em>η</em>-boundedness inspired by a question of Alon (asking how large <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> can be for a 3-colourable graph <em>G</em>), and motivated by a number of meaningful similarities to <em>χ</em>-boundedness, namely,</p><ul><li><span>•</span><span><p>given a graph <em>G</em>, we have <span><math><mi>η</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>≤</mo><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for every induced subgraph <em>H</em> of <em>G</em> if and only if <em>G</em> is perfect;</p></span></li><li><span>•</span><span><p>there are graphs <em>G</em> with both <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and the girth of <em>G</em> arbitrarily large; and</p></span></li><li><span>•</span><span><p>if <span><math><mi>C</mi></math></span> is a hereditary class of graphs which is polynomially <em>η</em>-bounded, then <span><math><mi>C</mi></math></span> satisfies the Erdős-Hajnal conjecture.</p></span></li></ul> The second bullet above in particular suggests an analogue of the Gyárfás-Sumner conjecture, that the class of all <em>H</em>-free graphs is <em>η</em>-bounded if (and only if) <em>H</em> is a forest. Like <em>χ</em>-boundedness, the case where <em>H</em> is a star is easy to verify, and we prove two non-trivial extensions of this: <em>H</em>-free graphs are <em>η</em>-bounded if (1) <em>H</em> has a vertex incident with all edges of <em>H</em>, or (2) <em>H</em> can be obtained from a star by subdividing at most one edge, exactly once.<p>Unlike <em>χ</em>-boundedness, the case where <em>H</em> is a path is surprisingly hard. Our main result mentioned at the beginning shows that <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs are <em>η</em>-bounded. The proof is rather involved compared to the classical “Gyárfás path” argument which establishes, for all <em>t</em>, the <em>χ</em>-boundedness of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-free graphs. It remains open whether <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-free graphs are <em>η</em>-bounded for <span><math><mi>t</mi><mo>≥</mo><mn>6</mn></math></span>.</p><p>It also remains open whether <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs are polynomially <em>η</em>-bounded, which, if true, would imply the Erdős-Hajnal conjecture for <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs. But we prove that <em>H</em>-free graphs are polynomially <em>η</em>-bounded if <em>H</em> is a proper induced subgraph of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>. We further generalize the case where <em>H</em> is a 1-regular graph on four vertices, showing that <em>H</em>-free graphs are polynomially <em>η</em>-bounded if <em>H</em> is a forest with no vertex of degree more than one and at most four vertices of degree one.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"165 \",\"pages\":\"Pages 142-163\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000990\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000990","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们每P5-free图证明有界集团包含一个小的数量集的最大稳定集(Pt表示t-vertex路径,图G, H,我们说G H-free如果没有诱导子图G的同构H)更普遍,我们说一个C类图表的η界:如果存在一个函数H N→N,η(G)≤H(ω(G))为每一个图G∈C,η(G)表示的最小基数达到设定的最大稳定集G,ω(G)是G的团数。另外,如果h可以被选为多项式,则C是多项式η有界的。我们引入η有界性,灵感来自于一个Alon问题(问一个3色图G的η(G)有多大),并受到一些与χ有界性有意义的相似性的启发,即:•给定一个图G,当且仅当G是完美的,我们有η(H)≤ω(H)对于G的每个诱导子图H;•如果C是一个多项式η有界图的遗传类,则C满足Erdős-Hajnal猜想。上面的第二个项目特别提出了Gyárfás-Sumner猜想的一个类比,即当(且仅当)H是森林时,所有无H图的类是η有界的。像χ-有界性一样,H是星的情况很容易验证,并且我们证明了它的两个非平凡扩展:如果(1)H与H的所有边都有一个顶点事件,或者(2)H可以通过最多细分一条边(恰好一次)从一个星得到,则无H图是η-有界的。与χ有界性不同,H是一条路径的情况非常困难。我们在开头提到的主要结果表明无p5图是η有界的。与经典的“Gyárfás路径”论证相比,这个证明是相当复杂的,对于所有t,它建立了无pt图的χ有界性。当t≥6时,无pt图是否η有界仍然是开放的。P5-free图是否多项式η有界仍然是开放的,如果这是真的,将意味着P5-free图的Erdős-Hajnal猜想。但我们证明了如果H是P5的适当诱导子图,则无H图是多项式η有界的。我们进一步推广了H是一个有四个顶点的1正则图的情况,证明了如果H是一个没有超过1次顶点且最多有四个1次顶点的森林,则无H图是多项式η有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hitting all maximum stable sets in P5-free graphs

We prove that every P5-free graph of bounded clique number contains a small hitting set of all its maximum stable sets (where Pt denotes the t-vertex path, and for graphs G,H, we say G is H-free if no induced subgraph of G is isomorphic to H).

More generally, let us say a class C of graphs is η-bounded if there exists a function h:NN such that η(G)h(ω(G)) for every graph GC, where η(G) denotes smallest cardinality of a hitting set of all maximum stable sets in G, and ω(G) is the clique number of G. Also, C is said to be polynomially η-bounded if in addition h can be chosen to be a polynomial.

We introduce η-boundedness inspired by a question of Alon (asking how large η(G) can be for a 3-colourable graph G), and motivated by a number of meaningful similarities to χ-boundedness, namely,

  • given a graph G, we have η(H)ω(H) for every induced subgraph H of G if and only if G is perfect;

  • there are graphs G with both η(G) and the girth of G arbitrarily large; and

  • if C is a hereditary class of graphs which is polynomially η-bounded, then C satisfies the Erdős-Hajnal conjecture.

The second bullet above in particular suggests an analogue of the Gyárfás-Sumner conjecture, that the class of all H-free graphs is η-bounded if (and only if) H is a forest. Like χ-boundedness, the case where H is a star is easy to verify, and we prove two non-trivial extensions of this: H-free graphs are η-bounded if (1) H has a vertex incident with all edges of H, or (2) H can be obtained from a star by subdividing at most one edge, exactly once.

Unlike χ-boundedness, the case where H is a path is surprisingly hard. Our main result mentioned at the beginning shows that P5-free graphs are η-bounded. The proof is rather involved compared to the classical “Gyárfás path” argument which establishes, for all t, the χ-boundedness of Pt-free graphs. It remains open whether Pt-free graphs are η-bounded for t6.

It also remains open whether P5-free graphs are polynomially η-bounded, which, if true, would imply the Erdős-Hajnal conjecture for P5-free graphs. But we prove that H-free graphs are polynomially η-bounded if H is a proper induced subgraph of P5. We further generalize the case where H is a 1-regular graph on four vertices, showing that H-free graphs are polynomially η-bounded if H is a forest with no vertex of degree more than one and at most four vertices of degree one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信