Anand Babu Amere , Mihir K. Dash , Balaji Senapati
{"title":"印度洋地下海洋热含量的经向偶极子模式及其多年代际变化","authors":"Anand Babu Amere , Mihir K. Dash , Balaji Senapati","doi":"10.1016/j.dynatmoce.2023.101412","DOIUrl":null,"url":null,"abstract":"<div><p>The dominant mode of the Indian Ocean variability can be impacted by changes in the background state (multidecadal timescale) of the subsurface heat content. The multidecadal variability of subsurface ocean heat content (sub-OHC) in the Indian Ocean is examined using four reanalysis products from 1958 to 2017. The analysis reveals a meridional basin-wide dipole mode in the subsurface OHC until the late 1980s, followed by the mode embedded in the uniform basin-wide patterns. These patterns are also observed in the trends of thermocline<span><span> and sea surface height. The observed patterns in the Indian Ocean are explained by two distinct mechanisms. Firstly, the multidecadal variability of dipole patterns over the Indian Ocean is influenced by local wind forcing. Wind stress trends and Ekman pumping velocity trends favor </span>downwelling (upwelling) in the off-equatorial southern Indian Ocean region, leading to thermocline depth deepening (shallowing) during 1958–1975 and 1976–1987, respectively. Secondly, the combined effect of heat transport from the western Pacific through Indonesian Through Flow and local wind forcing accounts for the basin-wide cooling and warming trends observed during 1988–2000, and 2001–2014, respectively.</span></p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"105 ","pages":"Article 101412"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A meridional dipole mode in the Indian Ocean subsurface ocean heat content and its multidecadal variability\",\"authors\":\"Anand Babu Amere , Mihir K. Dash , Balaji Senapati\",\"doi\":\"10.1016/j.dynatmoce.2023.101412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dominant mode of the Indian Ocean variability can be impacted by changes in the background state (multidecadal timescale) of the subsurface heat content. The multidecadal variability of subsurface ocean heat content (sub-OHC) in the Indian Ocean is examined using four reanalysis products from 1958 to 2017. The analysis reveals a meridional basin-wide dipole mode in the subsurface OHC until the late 1980s, followed by the mode embedded in the uniform basin-wide patterns. These patterns are also observed in the trends of thermocline<span><span> and sea surface height. The observed patterns in the Indian Ocean are explained by two distinct mechanisms. Firstly, the multidecadal variability of dipole patterns over the Indian Ocean is influenced by local wind forcing. Wind stress trends and Ekman pumping velocity trends favor </span>downwelling (upwelling) in the off-equatorial southern Indian Ocean region, leading to thermocline depth deepening (shallowing) during 1958–1975 and 1976–1987, respectively. Secondly, the combined effect of heat transport from the western Pacific through Indonesian Through Flow and local wind forcing accounts for the basin-wide cooling and warming trends observed during 1988–2000, and 2001–2014, respectively.</span></p></div>\",\"PeriodicalId\":50563,\"journal\":{\"name\":\"Dynamics of Atmospheres and Oceans\",\"volume\":\"105 \",\"pages\":\"Article 101412\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Atmospheres and Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377026523000635\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026523000635","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A meridional dipole mode in the Indian Ocean subsurface ocean heat content and its multidecadal variability
The dominant mode of the Indian Ocean variability can be impacted by changes in the background state (multidecadal timescale) of the subsurface heat content. The multidecadal variability of subsurface ocean heat content (sub-OHC) in the Indian Ocean is examined using four reanalysis products from 1958 to 2017. The analysis reveals a meridional basin-wide dipole mode in the subsurface OHC until the late 1980s, followed by the mode embedded in the uniform basin-wide patterns. These patterns are also observed in the trends of thermocline and sea surface height. The observed patterns in the Indian Ocean are explained by two distinct mechanisms. Firstly, the multidecadal variability of dipole patterns over the Indian Ocean is influenced by local wind forcing. Wind stress trends and Ekman pumping velocity trends favor downwelling (upwelling) in the off-equatorial southern Indian Ocean region, leading to thermocline depth deepening (shallowing) during 1958–1975 and 1976–1987, respectively. Secondly, the combined effect of heat transport from the western Pacific through Indonesian Through Flow and local wind forcing accounts for the basin-wide cooling and warming trends observed during 1988–2000, and 2001–2014, respectively.
期刊介绍:
Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate.
Authors are invited to submit articles, short contributions or scholarly reviews in the following areas:
•Dynamic meteorology
•Physical oceanography
•Geophysical fluid dynamics
•Climate variability and climate change
•Atmosphere-ocean-biosphere-cryosphere interactions
•Prediction and predictability
•Scale interactions
Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.