无支架骨髓间充质干细胞片促进负重大鼠重度骨缺损模型的骨形成。

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Tissue Engineering Part A Pub Date : 2024-02-01 Epub Date: 2023-12-21 DOI:10.1089/ten.TEA.2023.0118
Kazuaki Mito, Jordan Lachnish, Wei Le, Calvin Chan, Yun-Liang Chang, Jeffrey Yao
{"title":"无支架骨髓间充质干细胞片促进负重大鼠重度骨缺损模型的骨形成。","authors":"Kazuaki Mito, Jordan Lachnish, Wei Le, Calvin Chan, Yun-Liang Chang, Jeffrey Yao","doi":"10.1089/ten.TEA.2023.0118","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers have been exploring alternative methods for bone tissue engineering, as current management of critical bone defects may be a significant challenge for both patient and surgeon with conventional surgical treatments associated with several potential complications and drawbacks. Recent studies have shown mesenchymal stem cell sheets may enhance bone regeneration in different animal models. We investigated the efficacy of implanted scaffold-free bone marrow-derived mesenchymal stem cell (BMSC) sheets on bone regeneration of a critical bone defect in a weight-bearing rat model. BMSCs were isolated from the femora of male Sprague-Dawley rats 5-6 weeks of age and cell sheets were produced on temperature-responsive culture dishes. Nine male Sprague-Dawley rats 6-8 weeks of age were utilized. A bilateral femoral critical bone defect was created with a bridge plate serving as internal fixation. One side was randomly selected and BMSC sheets were implanted into the bone defect (BMSC group), with the contralateral side receiving no treatment (control). Rats were anesthetized and radiographs were performed at 2-week intervals. At the 8-week time point, rats were euthanized, femurs harvested, and microcomputed tomography and histological analysis was performed. We found a statistically significant increase in new bone formation and bone volume fraction compared with the control. Histomorphometry analysis revealed a larger percent of newly formed bone and a higher total histological score. Our results suggest that scaffold-free BMSC sheets may be used in the management of large weight-bearing bone defects to complement a different surgical technique or as a standalone approach followed by internal fixation. However, further research is still needed.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaffold-Free Bone Marrow-Derived Mesenchymal Stem Cell Sheets Enhance Bone Formation in a Weight-Bearing Rat Critical Bone Defect Model.\",\"authors\":\"Kazuaki Mito, Jordan Lachnish, Wei Le, Calvin Chan, Yun-Liang Chang, Jeffrey Yao\",\"doi\":\"10.1089/ten.TEA.2023.0118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Researchers have been exploring alternative methods for bone tissue engineering, as current management of critical bone defects may be a significant challenge for both patient and surgeon with conventional surgical treatments associated with several potential complications and drawbacks. Recent studies have shown mesenchymal stem cell sheets may enhance bone regeneration in different animal models. We investigated the efficacy of implanted scaffold-free bone marrow-derived mesenchymal stem cell (BMSC) sheets on bone regeneration of a critical bone defect in a weight-bearing rat model. BMSCs were isolated from the femora of male Sprague-Dawley rats 5-6 weeks of age and cell sheets were produced on temperature-responsive culture dishes. Nine male Sprague-Dawley rats 6-8 weeks of age were utilized. A bilateral femoral critical bone defect was created with a bridge plate serving as internal fixation. One side was randomly selected and BMSC sheets were implanted into the bone defect (BMSC group), with the contralateral side receiving no treatment (control). Rats were anesthetized and radiographs were performed at 2-week intervals. At the 8-week time point, rats were euthanized, femurs harvested, and microcomputed tomography and histological analysis was performed. We found a statistically significant increase in new bone formation and bone volume fraction compared with the control. Histomorphometry analysis revealed a larger percent of newly formed bone and a higher total histological score. Our results suggest that scaffold-free BMSC sheets may be used in the management of large weight-bearing bone defects to complement a different surgical technique or as a standalone approach followed by internal fixation. However, further research is still needed.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEA.2023.0118\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2023.0118","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

研究人员一直在探索骨组织工程的替代方法,因为目前大型骨缺损的管理对患者和外科医生来说都是一个重大挑战,传统的手术治疗导致了高并发症和翻修率。最近的研究表明,间充质干细胞片可以促进不同动物模型的骨再生。我们研究了移植无支架骨髓间充质干细胞(BMSC)片对大鼠负重模型重度骨缺损骨再生的影响。从5-6周龄雄性Sprague-Dawley大鼠股骨中分离骨髓间充质干细胞,在温度反应培养皿中制备细胞片。选用6 ~ 8周龄雄性Sprague-Dawley大鼠9只。双侧股骨严重骨缺损用桥钢板作为内固定。随机选择一侧骨缺损植入BMSC片(BMSC组),对侧不治疗(对照组)。麻醉大鼠,每隔2周拍摄x线片。在8周时间点,对大鼠实施安乐死,取股骨,进行显微ct和组织学分析。我们发现,与对照组相比,新骨形成和骨体积分数在统计学上有显著增加。组织形态分析显示,新生骨的百分比更高,总组织学评分更高。我们的研究结果表明,无支架的骨髓间充质干细胞片可用于大型负重骨缺损的治疗,以补充不同的手术技术或作为独立的方法,然后进行内固定。然而,还需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaffold-Free Bone Marrow-Derived Mesenchymal Stem Cell Sheets Enhance Bone Formation in a Weight-Bearing Rat Critical Bone Defect Model.

Researchers have been exploring alternative methods for bone tissue engineering, as current management of critical bone defects may be a significant challenge for both patient and surgeon with conventional surgical treatments associated with several potential complications and drawbacks. Recent studies have shown mesenchymal stem cell sheets may enhance bone regeneration in different animal models. We investigated the efficacy of implanted scaffold-free bone marrow-derived mesenchymal stem cell (BMSC) sheets on bone regeneration of a critical bone defect in a weight-bearing rat model. BMSCs were isolated from the femora of male Sprague-Dawley rats 5-6 weeks of age and cell sheets were produced on temperature-responsive culture dishes. Nine male Sprague-Dawley rats 6-8 weeks of age were utilized. A bilateral femoral critical bone defect was created with a bridge plate serving as internal fixation. One side was randomly selected and BMSC sheets were implanted into the bone defect (BMSC group), with the contralateral side receiving no treatment (control). Rats were anesthetized and radiographs were performed at 2-week intervals. At the 8-week time point, rats were euthanized, femurs harvested, and microcomputed tomography and histological analysis was performed. We found a statistically significant increase in new bone formation and bone volume fraction compared with the control. Histomorphometry analysis revealed a larger percent of newly formed bone and a higher total histological score. Our results suggest that scaffold-free BMSC sheets may be used in the management of large weight-bearing bone defects to complement a different surgical technique or as a standalone approach followed by internal fixation. However, further research is still needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信